说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 单边带变换器
1)  SSB converter
单边带变换器
2)  one-sided Laplace transform
单边Laplace变换
3)  subband non-uniform discrete Fourier transform
单边带非均匀离散傅立叶变换
4)  unilateral wavelet transformation
单边小波变换
1.
This algorithm changes bilateral wavelet transformation into a unilateral wavelet transformation,and raises the calculating speed and simplifies the algorithm model s complexity.
基本思路是将双边小波变换简化为单边小波变换,降低了计算模型的复杂度,利用向量奇偶分量同时代入模型计算,简化了数据恢复的步骤,从而大大提高了离散型非线性滤波器运算速度。
5)  unilateral Fourier ttransform
单边傅氏变换
6)  unilateral Laplace transform
单边拉氏变换
1.
Detailed study of Fourier transform in broad sense,this paper studies the differences and transform conditions of unilateral Fourier transform and unilateral Laplace transform,and last concluding some related theorems.
通过对广义傅氏变换的研究,进而对单边傅里叶变换和单边拉氏变换的差异和相互转化的条件进行探讨,并给出相关定理。
补充资料:Laplace变换


Laplace变换
Laplace transform

Ij户沈变换[u内倪加份七丽;几叨月aCa即eO6Pa30-aan“e] 广义地它是形如 F(,)一丁f(:)。一d:(1) L的LaplaCe积分(LaPhce inte脚1),这里积分是在复z平面的某一围道L上进行的,它在定义在L上的函数f(:)和复变数p=叮+i;的解析函数F(p)之间建立了一个对应关系.很多形如(l)式的积分由P,Uplace作了考察(见汇11). 狭义地,Up玩。变换理解为单侧助p廊e变换(one一sid刻UPlaceu艺nsfonn) F‘p,一L If,‘,,一丁f(亡)。一d。,‘2, 0这样称呼是为了区别于双侧LaPlace变换(t场。一sjded肠p俪etra璐form) F(,)一L of](,)一丁f(:)。一d:·(,)LaP玩。变换是一类特殊的积分变换(泊魄刘trans-form);(2)式或(3)式的变换与F以州er变换(Fo~tl习J侣允加)有紧密联系.双侧Lap玩e变换(3)可以看成函数f(Oe一“的凡~变换,而单侧Lap阮e变换(2)可以看成当OJ。时收敛而当ReP=叮<叮。时发散;这数a。称为(条件)收敛横坐标(a比c姚a of(conditional)coll祀理户Ice);2)积分(2)对所有的p都收敛,在这种情形下,令。。“一刃;3)积分(2)对所有的p发散,在这种情形下,令6。二+①.如果口。<+的,则积分(2)表示一个在收敛半平面(half·plane of con代rg-ence) Rep>。。内的单值解析函数F(p).通常限于考虑绝对收敛的积分(2).使得积分 J}f(,)}。一““‘ 0存在的那些6的最大下界称为绝对收敛横坐标(a比cl-ssaofa比。1吹。01】Ve醚笋nce)a。,,。簇叮。.如果a是使得}f(:)}=O(e“‘)(:一‘的)的那些口的下确界,则。。“a;数a有时称为f(t)的增长指数(j。山洗of growth) 在一定的附加条件下,f(t)能由它的UPlace变换F(p)唯一地重新得到.例如,如果f(t)在t。的某邻域中有界变差或如果f(0分段光滑,则Up咏e变换的反演公式(~ionform“巨forthe助P」ace七2贺允rm) 夕,、、_f(r。+O)+f(r。一O) f(t。)二止‘之‘止二一~‘二二一-‘二三=(4、 2 口+于R =钾一俪fF(,)e“‘’dp,叮>“。 2二i户必。硬‘,成立. 公式(2)和(4)使得有可能得到施加在象原和变换上的运算之间的很多关系式,也能得到经常遇到的象原的变换表.所有这些组成了算子演算(。详功-tio耐cakul璐)的初等部分. 在数学物理中,多维肠p阮e变换 F(,)一丁f(:)e一‘,,!,、:(5) C+有重要应用,这里t二(:,,…,t。)是、维E孤lid空间R”的点,夕=(夕,,…,尸。)“a+i;二(,:,‘’‘,,。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条