1) river water quality monitor
河水水质监测仪
2) water quality monitor
水质监测仪
1.
Design of water quality monitor based on technology of virtual instrument;
基于虚拟仪器技术的水质监测仪的设计
2.
Design of Ethernet interface of water quality monitor;
水质监测仪以太网接口的实现
4) water quality automonitor
自动水质监测仪
1.
The water quality automonitor,TW-6000,produced by Beijing Purkinje General Instrument Co.
采用普析通用公司生产的TW - 6 0 0 0自动水质监测仪测定COD ,与标准法 (GB11914— 1989)进行对照实验 ,再应用数理统计方法对结果加以分析 ,证明仪器法和标准法的数据无显著性差异 (显著性水平为 0 。
5) WanHeKou water quality Auto-Monitoring station
皖河口水质自动监测站
6) water quality monitor
水质监测
1.
Constructing the water quality monitor for city life-water recycling system based on virtual instrument;
基于虚拟仪器的城市生活用水回用系统水质监测体系的构建
2.
The paper deals with how to control water quality by water quality monitor to get a good result and puts forward the concrete operation methods.
阐述了水质监测全过程的质量控制技术,为获得合乎质量要求的监测结果,提出了具体的操作方法。
3.
The importance and the necessity of wireless sensor networks in water quality monitor are presented.
文中说明了无线传感器网络(WSN)在水质监测中应用的重要性和必要性,详细讨论了系统的原理及它的网络结构和各层技术。
补充资料:河水水质
河水的物理化学特性及其动态特征。河水的物理性质主要指水温、颜色、透明度、嗅和味。化学性质由溶解和分散于河流水中的气体、离子、分子,胶体物质及悬浮固体、微生物及这些物质的含量所决定。
河水溶解的主要化学成分与一般天然水的相似(见天然水水质),其评价指标也同于天然水。只有当河水用于某一特殊目的或发生偶然事件时,才增加新的测定项目。对水工建筑物,必须测定河水的侵蚀性。当发生人、畜流行病时,必须测定病原菌。当河水有严重污染时,必须测定某些特定的污染物等。
河水溶解的化学成分,按其丰度的顺序排列是:HCO婣、Ca2+、SO厈 、Cl-、Na+ 、Mg2+和K+。 这些主要离子的含量随矿化度的增大而增加,其中HCO婣的增加有较好的线性关系,在高矿化度的水中,SO厈 、Cl-、K+ 、Na+增加格外显著。由于河水不断更新,河水与河床沉积物质作用时间短,河水矿化度比湖水、地下水和海水的低。河水矿化度分四级:①弱矿化,矿化度小于200毫克/升;②中矿化,矿化度为 200~500毫克/升;③强矿化,矿化度为500~1000毫克/升;④高矿化,矿化度大于1000毫克/升。地球上大多数河水为弱矿化水和中矿化水。中国河水矿化度, 在淮河秦岭以南一般低于 200~300毫克/升,淮河秦岭以北高于200~300毫克/升,而西北部局部地区可高达1000毫克/升以上。
影响河水水质的主要因素是河水的补给来源,水文气候因素,流域内的岩石、土壤、植被条件和人类活动等。冰雪融水补给的河水,因气候寒冷,化学过程缓慢,融水仅从表层土壤溶滤出盐分,河水矿化度较低。由地下水补给的河水,因地下水长时间与土壤岩石密切接触,从其中淋溶出较多的溶解成分,使河水有较高的矿化度。主要由雨水补给的河水,是通过地表径流汇集河槽的,受流域气候和土壤覆盖层影响大,矿化度一般介于冰雪融水补给和地下水补给的河水之间。
湿润多雨区,地表化学元素长期遭到雨水淋溶,尤其是迁移能力强的元素,残存甚微或被淋溶殆尽,致使河水矿化度低,在这种地区河水的离子组成中HCO婣和Ca2+占绝对优势,pH值低,水呈酸性。干旱少雨区,蒸发强,地表盐分累积,河水矿化度增加,这种地区河水的离子组成中SO娺-、Cl-、Na+含量较高,河水多呈碱性,pH值偏高。
河水由于在年内不同时期补给类型的更迭和气象因素的作用,河水矿化度呈现季节性变化。在地表水补给时期,河水矿化度低,并随水量增大矿化度降低。全年以雨水补给为主的河流,矿化度变化幅度不大。在枯水期转为由地下水补给的河流,枯水期河水矿化度增高。
水中溶解的气体和某些生物原生质,因水温、光合作用的四季变化和日夜交替而呈现季节性特征和昼夜的差异。高温季节水中溶解氧显著降低。
人类活动特别是工业废水废渣、生活污水和农田排水汇入河道,水路交通工具的排污,水渠开挖和水工建筑物的修筑等,都不同程度改变河水的化学成分和水化学动态(见水体污染)。
河水溶解的主要化学成分与一般天然水的相似(见天然水水质),其评价指标也同于天然水。只有当河水用于某一特殊目的或发生偶然事件时,才增加新的测定项目。对水工建筑物,必须测定河水的侵蚀性。当发生人、畜流行病时,必须测定病原菌。当河水有严重污染时,必须测定某些特定的污染物等。
河水溶解的化学成分,按其丰度的顺序排列是:HCO婣、Ca2+、SO厈 、Cl-、Na+ 、Mg2+和K+。 这些主要离子的含量随矿化度的增大而增加,其中HCO婣的增加有较好的线性关系,在高矿化度的水中,SO厈 、Cl-、K+ 、Na+增加格外显著。由于河水不断更新,河水与河床沉积物质作用时间短,河水矿化度比湖水、地下水和海水的低。河水矿化度分四级:①弱矿化,矿化度小于200毫克/升;②中矿化,矿化度为 200~500毫克/升;③强矿化,矿化度为500~1000毫克/升;④高矿化,矿化度大于1000毫克/升。地球上大多数河水为弱矿化水和中矿化水。中国河水矿化度, 在淮河秦岭以南一般低于 200~300毫克/升,淮河秦岭以北高于200~300毫克/升,而西北部局部地区可高达1000毫克/升以上。
影响河水水质的主要因素是河水的补给来源,水文气候因素,流域内的岩石、土壤、植被条件和人类活动等。冰雪融水补给的河水,因气候寒冷,化学过程缓慢,融水仅从表层土壤溶滤出盐分,河水矿化度较低。由地下水补给的河水,因地下水长时间与土壤岩石密切接触,从其中淋溶出较多的溶解成分,使河水有较高的矿化度。主要由雨水补给的河水,是通过地表径流汇集河槽的,受流域气候和土壤覆盖层影响大,矿化度一般介于冰雪融水补给和地下水补给的河水之间。
湿润多雨区,地表化学元素长期遭到雨水淋溶,尤其是迁移能力强的元素,残存甚微或被淋溶殆尽,致使河水矿化度低,在这种地区河水的离子组成中HCO婣和Ca2+占绝对优势,pH值低,水呈酸性。干旱少雨区,蒸发强,地表盐分累积,河水矿化度增加,这种地区河水的离子组成中SO娺-、Cl-、Na+含量较高,河水多呈碱性,pH值偏高。
河水由于在年内不同时期补给类型的更迭和气象因素的作用,河水矿化度呈现季节性变化。在地表水补给时期,河水矿化度低,并随水量增大矿化度降低。全年以雨水补给为主的河流,矿化度变化幅度不大。在枯水期转为由地下水补给的河流,枯水期河水矿化度增高。
水中溶解的气体和某些生物原生质,因水温、光合作用的四季变化和日夜交替而呈现季节性特征和昼夜的差异。高温季节水中溶解氧显著降低。
人类活动特别是工业废水废渣、生活污水和农田排水汇入河道,水路交通工具的排污,水渠开挖和水工建筑物的修筑等,都不同程度改变河水的化学成分和水化学动态(见水体污染)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条