1) magnetic doublet radiator
磁性偶极辐射器
2) magnetic doublet radiator
磁偶极子辐射器(电信)
3) magnetic dipole radiation
磁偶极子辐射
4) dipole radiation
偶极辐射
1.
The dipole radiation is described by the classical method,the radiation energy,the instantaneous radiation intensity and the average radiation intensity are given analytically.
在经典物理框架内,把中心对称介质的偶极子运动方程化为了具有立方项的二阶非线性微分方程,用Jacobian椭圆函数和第一类全椭圆积分给出了方程的解和电子振荡周期,并对偶极辐射进行了经典描述,给出了电子的辐射能量、瞬时辐射强度和平均辐射强度。
2.
the eigenmedes are left--hand or right--hand circular polarised wave,the dipole radiation is closely related to the chirality parameter.
结果表明:手征媒质中存在电磁模式分裂,其本征模为左、右旋圆极化波,偶极辐射性质与旋波因子密切相关。
5) Electric dipole radiation
电偶极辐射
1.
Calculates the energy flux density of elliptic-polarization electric dipole radiation based on the theory of electric dipole radiation, and, further, the radiant power of the electric dipole; discusses the electromagnetic radiation of the triphase alternator which is treated as a special case.
基于电偶极辐射的理论基础,导出作椭圆振动的电偶极辐射在远场辐射区的能流密度,进而求出辐射功率。
2.
The atomic fluorescence can be explained perfectly by the classical theories of electric dipole radiation.
原子与激光场相互作用产生的自发辐射可以用经典电偶极辐射理论很好的描述。
6) electrical dipole radiation
电偶极辐射
1.
The general form of nondivergence dyadic Green s function of electomagnetic field vector in chiral media is given,and then the nondivergence magnetic vector potential of the radiation field in chiral media is constructed ,and the electrical wave radiation in chiral media is investigated by taking electrical dipole radiation for example.
应用文献[1]的方法给出了旋波媒质中电磁场矢量的无散并矢格林函数的普遍形式,然后由此构造出旋波媒质中辐射场的无散磁矢势,并且以电偶极辐射为例,进一步研究了旋波媒质中电磁波的辐射问题。
2.
In this paper, we discussed the transition selection rule of electrical dipole radiation in atom physics by the parity theory and angular momentum theory in quantum.
本文利用量子力学的宇称理论和角动量理论,对原子物理学中所熟知的电偶极辐射的跃迁选择定则进行了理论探讨。
补充资料:“质子-电子偶极-偶极”质子弛豫增强
“质子-电子偶极-偶极”质子弛豫增强
物理学术语。原子核外层中不成对的电子质量小,但磁动性很强,可使局部磁场波动增强,促使氢质子弛豫加快,从而使T1和T2缩短,这种效应即为PEDDPRE。过渡元素和镧系元素大部分在d和f轨道有多个不成对电子,所以其离子往往具有PEDDPRE,可用来作顺磁性对比剂,如钆(Gd)。Gd在外层有7个不成对电子,具有很强的顺磁性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条