1) earth pressure at rest
土静止压力
2) earth pressure at rest
静止土压力
1.
Application of reduced suction in calculation of soil earth pressure at rest for expansive soils;
折减吸力在膨胀土静止土压力计算中的应用
2.
The author,by means of experiments and analyses,has studied the shear strength,earth pressure at rest and modulus of resilience,.
基于此,作者通过试验分析手段研究了卸载土体的抗剪强度、静止土压力系数、回弹模量等问题,并分别探讨了其工程应用价值。
3) static earth pressure
静止土压力
1.
By simulating the excavation course of foundation pits and starting with the change of stress field,the regularities of remanent strength and static earth pressure of viscous soil mass under excavated plane are analyzed so that the influence depth due to soil mass excavation unloading may be determined.
模拟基坑开挖过程,由应力场变化方面入手分析开挖面以下粘性土体残余强度和静止土压力的规律性,以期确定土体开挖卸荷的影响深度。
2.
Common methods for calculating static earth pressure coefficient K_0 are summed up and the applicability of these methods are also studied.
归纳了静止土压力系数K0的计算方法,并对静止土压力计算方法的适用性进行了探讨。
4) coefficient of earth pressure at rest
静止土压力系数
1.
Experimental results show that the value of the coefficient of earth pressure at rest ( K\-0 ) of the reinforced soils changes with the number of geotextile, the planting forms of geotextile within the soil mass and the over conso.
通过在研制改进的固结试验仪上 ,进行一系列考虑土工织物埋置在土中不同位置时加筋土的单轴固结试验及三轴K0 固结试验和不排水剪切试验 ,从静止土压力系数的变化 ,探讨了土中埋置有土工织物的加筋土层的土压力减轻作用及剪切强度的增加作用。
2.
Three formulae are derived to determine the coefficient of earth pressure at rest for cohesionless soil by using the stress vector based constitutive model.
利用将应力矢量的作用效应分解为球应力作用效应和应力比矢量作用效应叠加而建立的应力矢量本构模型 ,推出了无粘性土静止土压力系数的三个计算公式。
5) earth pressure coefficient at rest
静止土压力系数
1.
The unloading earth pressure coefficient at rest is discussed by studying on the variation of lateral stress due to vertical stress reduced,with the aim to emphasized that the pressure coefficient is not constant.
依据卸荷土体K0状态hσ~vσ试验,本文研究了加、卸荷土体的静止土压力系数K0的差别,目的在于强调卸荷土体K0的非常数性,提醒人们选择K0,必须分清应力状态。
2.
In the light of the problem of excavation and unloading of foundation pits,the relationship among the coefficients of earth pressure at rest in unloaded,overconsolidated and normally conslidated soils with the aim to emphasize the difference between the earth pressure coefficient at rest in the unloaded soil and that in the loaded soil.
本文针对基坑开挖卸荷的问题 ,就卸荷土体的静止土压力系数、超固体土体的静止土压力系数以及正常固体土体的静止土压力系数三者之间的关系问题 ,进行了试验研究 ,目的在于强调卸荷土体静止土压力系数与加荷状态静止土压力系数的不同之
6) earth pressue at rest
土压力静止土压力
补充资料:土压力
土体作用于挡土结构物上的侧压力。挡土结构物通常包括边坡挡土墙、桥台、码头板桩墙和基坑护壁墙,等等。研究土压力主要是研究挡土结构物所受土压力的大小和分布规律,并据以确定挡土结构物的形式和尺寸。土压力是土力学研究的一项内容。
挡土结构物承受土压力的大小取决于挡土结构物的移动方向和位移量;土压力的分布则取决于挡土结构物的柔性变形和施工程序。
主动土压力和被动土压力 土压力分为主动土压力和被动土压力。图所示为一刚性挡土墙,墙高为H,墙背AB的倾斜角为α,填土顶面坡度为β,填料为砂土,其单位重为γ,内摩擦角为ψ,墙背摩擦角为δ。若墙背AB在土压力作用下向左移动,使土体的侧压力减小而发生破坏,破坏时产生一个外于极限平衡状态的滑动土楔体ABC,此时墙背所受的土压力称为主动土压力Ea(图之a)。反之,如果墙背AB在外力作用下向右移动,并使土体的侧压力增大而发生破坏,也产生一个处于极限平衡状态的滑动土楔体ABC,而墙背所受的土压力称为被动土压力Ep(图之b)。如图上所示,被动土压力大于主动土压力。土体破裂面BC一般呈曲线状。为了简化计算,C.-A.de库仑假设破裂面为直线,并据此导出下列计算土压力公式:
式中γ为土的容量;Ka和Kp分别为主动土压力系数和被动土压力系数:
如果墙壁垂直且光滑, 填土表面为水平, 即α=90°,β=δ=0,式(3)、(4)变为:
,
(5)
。
(6)这种情况称为兰金状态。上述库仑和兰金理论均假定土压力的分布规律为三角形,其合力作用点在墙背高度的1/3处。
苏联В.В.索科洛夫斯基用极限平衡理论求出具有任何填土表面的倾斜挡土墙土压力的精确解答,他求得的滑动破裂线都是对数螺旋曲线。对于墙后有水平填土表面的垂直刚性挡土墙,用库仑和兰金理论所得的结果与索科洛夫斯基的精确解答大致有如下关系:
ER=1.24EK,
EC=0.98EK,式中ER为按兰金理论计算的结果;EC为按库仑理论计算的结果;EK为按精确方法计算的结果。由此可知,确定挡土墙主动土压力时,用库仑理论能得出足够精确的结果。但据一些学者的实验研究,用库仑理论确定被动土压力,误差较大,而且这个误差还随着土的内摩擦角的增大而增大。
确定土压力还有图解分析法和图解法。图解分析法是用作图确定近似于滑动线的精确曲线,然后确定滑落棱体各部分的重量,借助力的三角形,求出土压力的数值。图解法是以库仑假设为基础,即假设滑动线为直线,此法一般仅适用于确定主动土压力,结果同精确解相近。确定被动土压力则必须采用图解分析法。图解法和图解分析法的优点在于能自行核对,避免较大误差,可以用简便的作图方法计算复杂条件下的土压力。
影响土压力的因素 库仑和兰金理论虽已得到广泛应用,但土压力实际上受许多因素的影响,很难精确计算。如挡土结构物的柔度和施工程序就能影响土压力的分布,柔性挡土墙上的土压力往往不呈三角形分布,而是随挡土墙的柔性情况呈各种曲线分布,其土压力总值也与按库仑或兰金理论计算出的有所差别。施工过程中填土的密实度以及完工后的沉陷,能增大土压力,尤其是粘性土的流变作用会导致土压力随时间而增大。至于车辆的动力、温度和湿度变化对土压力的影响将更为复杂。因此,目前尚无简易而可靠的土压力计算方法。工程中常采用在库仑理论基础上加大安全系数的办法来预防可能出现的各种不利的后果。对于重要的挡土结构物,则须用专门办法来确定土压力。
挡土结构物承受土压力的大小取决于挡土结构物的移动方向和位移量;土压力的分布则取决于挡土结构物的柔性变形和施工程序。
主动土压力和被动土压力 土压力分为主动土压力和被动土压力。图所示为一刚性挡土墙,墙高为H,墙背AB的倾斜角为α,填土顶面坡度为β,填料为砂土,其单位重为γ,内摩擦角为ψ,墙背摩擦角为δ。若墙背AB在土压力作用下向左移动,使土体的侧压力减小而发生破坏,破坏时产生一个外于极限平衡状态的滑动土楔体ABC,此时墙背所受的土压力称为主动土压力Ea(图之a)。反之,如果墙背AB在外力作用下向右移动,并使土体的侧压力增大而发生破坏,也产生一个处于极限平衡状态的滑动土楔体ABC,而墙背所受的土压力称为被动土压力Ep(图之b)。如图上所示,被动土压力大于主动土压力。土体破裂面BC一般呈曲线状。为了简化计算,C.-A.de库仑假设破裂面为直线,并据此导出下列计算土压力公式:
式中γ为土的容量;Ka和Kp分别为主动土压力系数和被动土压力系数:
如果墙壁垂直且光滑, 填土表面为水平, 即α=90°,β=δ=0,式(3)、(4)变为:
,
(5)
。
(6)这种情况称为兰金状态。上述库仑和兰金理论均假定土压力的分布规律为三角形,其合力作用点在墙背高度的1/3处。
苏联В.В.索科洛夫斯基用极限平衡理论求出具有任何填土表面的倾斜挡土墙土压力的精确解答,他求得的滑动破裂线都是对数螺旋曲线。对于墙后有水平填土表面的垂直刚性挡土墙,用库仑和兰金理论所得的结果与索科洛夫斯基的精确解答大致有如下关系:
ER=1.24EK,
EC=0.98EK,式中ER为按兰金理论计算的结果;EC为按库仑理论计算的结果;EK为按精确方法计算的结果。由此可知,确定挡土墙主动土压力时,用库仑理论能得出足够精确的结果。但据一些学者的实验研究,用库仑理论确定被动土压力,误差较大,而且这个误差还随着土的内摩擦角的增大而增大。
确定土压力还有图解分析法和图解法。图解分析法是用作图确定近似于滑动线的精确曲线,然后确定滑落棱体各部分的重量,借助力的三角形,求出土压力的数值。图解法是以库仑假设为基础,即假设滑动线为直线,此法一般仅适用于确定主动土压力,结果同精确解相近。确定被动土压力则必须采用图解分析法。图解法和图解分析法的优点在于能自行核对,避免较大误差,可以用简便的作图方法计算复杂条件下的土压力。
影响土压力的因素 库仑和兰金理论虽已得到广泛应用,但土压力实际上受许多因素的影响,很难精确计算。如挡土结构物的柔度和施工程序就能影响土压力的分布,柔性挡土墙上的土压力往往不呈三角形分布,而是随挡土墙的柔性情况呈各种曲线分布,其土压力总值也与按库仑或兰金理论计算出的有所差别。施工过程中填土的密实度以及完工后的沉陷,能增大土压力,尤其是粘性土的流变作用会导致土压力随时间而增大。至于车辆的动力、温度和湿度变化对土压力的影响将更为复杂。因此,目前尚无简易而可靠的土压力计算方法。工程中常采用在库仑理论基础上加大安全系数的办法来预防可能出现的各种不利的后果。对于重要的挡土结构物,则须用专门办法来确定土压力。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条