说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 顶点函数
1)  vertex function
顶点函数
2)  vertex invariant
顶点不变函数
1.
The new vertex invariant is defined based on the number of the paths for a given length.
基于顶点之间具有一定长度的路径数等信息,定义了一类顶点不变函数。
3)  three point vertex function
三点顶角函数
4)  flat-top function
平顶函数
5)  vertex algebra
顶点代数
1.
Vertex Operator Representations of 3-twisted Affine Lie Algebra (?)[θ] and Modules for Vertex Algebra;
3-twisted仿射李代数(?)[θ]的顶点算子表示和顶点代数模
2.
In this paper,a vertex algebra associated to a over field of prime characteristic is presented.
根据素特征域P的特点,利用一个有单位元的结合代数A,在限定的条件下给出了一个代数结构,证明了其满足顶点代数的定义,从而构造了一个新的顶点代数。
3.
In this article,we give out that the homomorphism between vertex algebras can uniquely induce the homomorphism between local vertex Lie algebras which are constructed from the vertex algebra.
进一步讨论局部顶点李代数同态与顶点代数同态之间的关系。
6)  vertex exponent
顶点指数
1.
This paper discusses the vertex exponent for the class of primitive digraph.
研究一类本原有向图的顶点指数 ,证明了n(≥ 3)阶围长为 2的本原有向图的最小顶点指数的最大值exp2 (n ,1)是 :若n是奇数 ,则exp2 (n ,1) =2n - 3;若n是偶数 ,则exp2 (n ,1)=2n - 4 。
2.
This paper discusses the generalized exponent of two primitive digraphs and gives the vertex exponent,the k th lower generalized exponent and the k th upper generalized exponent.
本文研究了两个本原有向图顶点指数和广义重下指数以及广义重上指
3.
This paper discusses the minimal vertex exponent set for the class of primitive digraph.
研究一类本原有向图的最小顶点指数集 ,证明了n(≥ 3)阶围长为 2的本原有向图的最小顶点指数集En是 :若n是奇数 ,则En ={ 2 ,3,… ,2n - 3} ;若n是偶数 ,则En={ 2 ,3,… ,2n- 4 } 。
补充资料:变分原理(复变函数论中的)


变分原理(复变函数论中的)
omplex function theory) variational principles (in

  f日In}F(O(只,t),0)l}乙+:d乙=】nll,—}——,厂:’、一几t)〔.匕,日亡卜OC一“C’日当r,0时下*(:、,t)/:在B*的紧子集上一致地趋于0(k一1,2).该结果已被推广到二连通区域(13」).若加以进一步的限制,就能得到映射函数在B、(t)内关于表征所考虑区域边界形变的参数的展开式余项的估计式(在闭区域内一致)(【4」).份卜注】存在大量的变分原理,见【A3}第10章.亦可见变分参数法(variation一parametrie nlethod);肠”ner方法(幼wner Tnetl〕ed);内变分方法(internalvariations,服t】1‘对of). 还可见边界变分方法(boundary variations,me-tll‘xlof).M.schiffer对单叶函数的变分方法做出了重要的贡献,见〔A3」第10章.变分原理(复变函数论中的)Ivaria石0“目州址妙es(加e网Plex五叮‘6佣山印ry);。即“a双“OHH从e nP一”u“nHI 显示在平面区域的某些形变过程中那些支配映射函数变分的法则的断语. 主要的定性变分原理是ljxlelbf原理(Linde场fpnnciPle),可描述如下.设B*是z*平面上边界点多于一点的单连通区域,06B*,k=1,2;设二(;,B*)是对于B*的Green函数的阶层曲线,即圆盘王心川C!<1}到B*而使原点保持不变的单叶共形映上映射下圆周C(r)二{乙:{心}二;}的象,o<;<1.进而设函数f(:,)实现B,到B:的共形单射,f(0)‘O,在这些假定下有:l)对于L(:,B,)上任一点:?,存在位于阶层曲线L(:,BZ)上(这仅当f(B,)二BZ才有可能)或其内部的一点与之对应;及2){f’(0)1蕊}夕‘(0)},其中g(:,)满足g(0)二o是Bl到 BZ的单叶共形映射(等号仅当f(B1)=B:时成立).Lindebf原理系从Rien坦nn映射定理(见Rle-n.lln定理(Rierl飞幻In theorem))与Sdlwarz引理(Schwarz lemrr必)推出.相当精细的构造使之能够求出由被映射区域的给定形变所引起的映射函数的逐点偏差. 定量的基本变分原理系由M.A.几aBpeHTbeB(〔1」)获得(亦可见【2]),可叙述如下,设B:是具有解析边界的单连通区域,0任B!.假定存在给定区域族B,(r),0‘Bl(r),0(t蕊T,T>O,B;(0)二B,,具有JOrdan边界rl(t)={:一z,=0(之,t)},0(又续2兀,0(0,t)二Q(2二,r),其中Q(又,r)关于t在t二O可微且对又是一致的;设F(::,t),F(0,t)=0,F:.(0,t)>O,是把B,(t)单叶共形映射为BZ二{22:I:21  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条