1) specific plastic
比塑性
2) elastic-plastic ratio
弹塑性比
1.
The calculating method of elastic-plastic ratio in the FEM simulation process of quenching;
淬火工艺有限元模拟中弹塑性比例系数的计算方法
3) value of plastic strain ratio
塑性应变比
1.
The hardening exponent,value of plastic strain ratio,yield strength,tensile strength,even percentage elongation and other mechanical performances have been studied.
对400MPa超级钢板材进行了拉伸试验、冷弯试验和金相组织检验,获得了超级钢板的硬化指数、塑性应变比、屈服强度、极限强度等力学性能,并分析了400MPa超级钢板的冲压成形性能,了解这些性能对超级钢冲压件在汽车行业里的应用与生产具有一定的指导作用。
2.
The mechanical performances such as hardening index,value of plastic strain ratio,yield stre.
研究了超级钢板的硬化指数、塑性应变比、屈服强度、极限强度、均匀延伸率等机械性能,并分析了超级钢板的冲压成形性能,超级刚具有较好的胀形性能、拉深性能、弯曲性能,抗起皱性能等冲压性能,可以广泛地应用于汽车冲压零件生产中。
4) plastic ratio inflexion
塑性比拐点
1.
When the intermesh reach one value(plastic ratio inflexion),the simulation show that the plastic zone expand rapidly along length and increase slowly across thickness,all these means the leveling efficiency is not high;plastic ratio inflexion will appear lately as the thickness increase;otherwise,the intermesh,which is under plastic ratio inflexion and make plastic ratio be 60%.
模拟结果表明,入口压弯量在达到一定程度(即塑性比拐点)时,入口处轧件塑性变形区沿长度方向扩展迅速,而沿厚度方向增加缓慢,此时矫直效率降低;对厚度不同的轧件,随着厚度的增加,塑性比拐点出现较晚;另外塑性比拐点以下,使塑性比达60%~85%的入口压弯量引起的残余应力值变化不大,只是残余应力分布状况不同,而当入口压弯量超过塑性比拐点时,轧件的残余应力在某些区域则发生较大变化。
5) Plastic strain ratio
塑性应变比
1.
Analysis on uncertainty of plastic strain ratio-r ratio of metallic sheet;
金属薄板塑性应变比r值的测量不确定度分析
2.
Effects of electric field annealing on plastic strain ratio(r value)of IF(interstitial free)deep drawing steel sheet were studied by mean of tensile test.
通过拉伸实验研究了电场退火(850℃,25min)对IF深冲钢板塑性应变比(r值)的影响。
3.
Based on the models of continues mechanics of textured polycrystals (CMTP) and Kochend(?)rfer in which the quadric yield function form is employed, the plastic strain ratio (R-values) of polycrystalline metal (deep-drawing IF steel sheets) is calculated by the approaches of modified maximum entropy method (MMEM) of low-resolution texture analysis and harmonic method.
采用反射低分辨改进最大熵三维取向分布函数法(MMEMODF)和级数展开法(简ODF),按照织构多晶体连续力学法(CMTP),遵循Konchendrfer模型,选择非二次型屈服函数来预估多晶体深冲IF钢板的塑性应变比R值。
6) elastic viscoplastic analogy
弹性粘塑性比拟
补充资料:弹—塑性变分原理
弹—塑性变分原理
elastic-plastic variational principle
tan一suxing bionfen yuanll弹一塑性变分原理(elastie一plastic variation-al Principle)适于弹一塑性材料的能量泛函的极值理论。包括最小势能原理和最小余能原理。塑性加工力学中常用最小势能原理。变形力学问题的能量解法和有限元解法都基于最小势能原理。最小势能原理有全量理论最小势能原理和增量理论最小势能原理。 全量理论最小势能原理在极值路径(应变比能取极值的路径)下运动许可的位移场u‘中,真实的位移和应变使所对应的总势能取最小,即总势能泛涵巾取最小值,其表达式为”一0,’一万〔A(一,一关一〕dV一好多!一‘“ (l)式中“:为位移;户:为外力已知面上的单位表面力;关为体力;A(气)为应变比能。 A(勒)随材料的模型而异。对应变硬化材料(图a), E严_‘_‘_ A(乓r)一二丁二一气助+{刃(r)dr(2) 6(1一2刃~一“‘J一、-一、- 0式中E,,分别为弹性模量和泊松比;艺一硫瓜,r一掩不万,,,f,一,一音。魔。,,一,一,一音。*。!,;。f,为克罗内克(L.Kroneeker)记号,i=夕时a,一l,i笋少时民,一。,把式(2)代入式(1)便得到卡恰诺夫(几·M·Ka、aHoe)原理x的表达式。i厂:八 I’—几 I’一 ab 乞一乏(r)关系图 a一应变硬化材料;占~理想塑性材料 对于理想塑性材料(图b), 艺~ZGr(r
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条