1) rear stagnation point
后驻点
2) stagnation
[英][stæg'neiʃən] [美][stæg'neʃən]
驻点驻止
3) stagnation point
驻点
1.
It is important to analyze the distribution of strain rate near the stagnation point for understanding the mechanic and heat behaviors of the material during explosive welding.
为了认识爆炸焊接驻点近区材料的力学和热学行为 ,分析波状界面和绝热剪切带生成 ,采用理想流体对称碰撞模型沿流线研究了驻点近区的应变率分布规律 ,并推导出了驻点应变率的理论计算公式。
2.
The calculation of stagnation point position of straight pipeline section with both movable ends and L-type pipeline section with bend at one end and bellows type expansion joint at other end is discussed.
探讨了两侧为活动端的直管段及一侧活动端为弯头,而另一侧活动端为波纹管补偿器的水平转角管段驻点位置的计算。
3.
In allusion to Funar Conjecture :"If a random triangle lies in a closed unit square,then its inscribed circle s radius,r≤(5-1)/4",an equivalent minimum problem about a function of 2-variables is studied;the stagnation point and its value,value on the boundary of the function of 2-variables are studied,the equivalent problem is proved correct,so the Funar Conjecture is proved correct.
针对Funar猜想:“设任意三角形位于闭单位正方形内,则该三角形的内切圆半径,r≤(5-1)/4”,研究了与其等价的某二元函数的最小值问题;利用对此二元函数驻点及其取值、边界取值讨论,证明了等价问题成立,进而此Funar猜想得证。
4) critical point
驻点
1.
Based on those ba- sic theories , the critical point method of optimal polarization is given and reinforced at length .
在此基础上给出了最优极化分析驻点法,同时进行了补充并修正了文献中的错误。
2.
Darboux s theoryis used t prove that the extreme ualue of univariate function is its maximum or minimum when it has only one critical point.
运用布定理证明“一元函数只有一个驻点时 ,其极大 (极小 )值就是最大 (最小 )值” 。
5) stable point
驻点
1.
The extreme value of binary function at f_(xx)f_(yy)-f~2_(xy)=0 is judged by its direction derivative which follows ray starting from stable point and passing point P at every point P in noncentral neighborhood of stable point.
用驻点的去心邻域内各点P处函数沿以驻点为端点的过点P的射线方向的方向导数是否同号,来判定二元函数f(x,y)在fxxfyy-f2xy=0时的极限。
6) stationary point
驻点
1.
This article deals with problems of extreme value of tribasic and dual functions in the cases of infinite stationary point,offers a determined approach to extreme value,and,with it,gives a proof of several inequalities.
讨论了多元函数在有无穷多个驻点的情况下的极值问题,给出了极值的判定方法,并用来证明一些不等式。
2.
Using Taylor Theorem,we generalize the second sufficient conditions for extreme point and inflection point,and give the classification for a large class of stationary point.
利用泰勒定理,推广了极值的第二充分条件和拐点的第二充分条件,并对某一大类驻点进行了分类。
补充资料:驻点
1.蹲点。 2.停留或驻扎的地方。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条