1) principal plane of glide
脂移平面
2) agar plate
琼脂平面
3) plane slip
平面滑移
4) plane displacement
平面位移
1.
The generation of plane displacement of skew intersection curved cable-stayed bridge are introduced and the laws of plane displacement variation are studied in the cases of the bridge subjected to different loads,such as temperature,the shrinkage and creep of concrete,the living loads and so on.
利用有限元软件对一座斜交曲线桥建立空间计算模型并进行受力计算,对其平面内位移进行了分析,阐述了斜交曲线斜拉桥产生平面位移的机理,研究了温度、混凝土收缩徐变、活载等不同类型荷载作用情况下平面内位移的变化规律,全面分析了斜交曲线斜拉桥力学特点和空间作用效应,可以作为其他斜交曲线斜拉桥设计分析的依据。
2.
This article analyzes the plane displacement mechanism of curve beam bridge.
分析了曲线梁桥平面位移的机理,探讨了影响平面位移的主要因素,并结合工程实例对影响因素进行了验证。
5) translation surface
平移曲面
1.
Discusses the translation surfaces with dependent Gauss curvature and mean curvature in the 3-dimensional Euclidean space E3 and the 3-dimensional Minkowski space L3, with a classification given to these curved surfaces.
讨论三维Euclidean空间E~3={R~3:dx~2+dy~2+dz~2}和三维Minkowski空间L~3={R~3:dx~2+dy~2-dz~2}中具有相关Gauss曲率与平均曲率的平移曲面,给出了该种曲面的分类。
2.
,space-like, time-like and light-like vectors among which choosing any two vectors as the directions of translation will divide the translation surfaces into six types.
在三维Minkowski空间中,存在类空、类时和类光三种向量,选取这三种向量中的任意两种作为两个平移方向,可以将平移曲面分为六类。
6) glide plane
滑移平面
补充资料:变形力学问题的滑移线解法
变形力学问题的滑移线解法
slip line solution in mechanics of deformation
线法解析轴对称变形问题也在探索之中。 滑移线场标记方法变形体内任取一点尸,如图 1。以滑移线为边界绕P取一曲边正交的单元体,则使 单元体顺时针转动的最大剪应力方向为a线方向;使 体素反时针转动的最大剪应力方向为夕线方向。若abianxing lixue Wenti de huQyixian iiefa线与尹线构成右手坐标系的轴,则代数值最大的主应变形力学问题的滑移线解法(s lin hne solu一力。的作用线通过第1和第3象限。。线各点切线同tion in mechattics of deformation)利用描述所取坐标轴x轴正向夹角为尹。滑移线转角同平均应力变化关系的亨基(H. Hencky)应力方程求解变形力学间题的方法。变形区内任一点处两个最大剪应力相等并互相垂直,连结各点最大剪应力方向的连续曲线为两族正交滑移线,分别称a和],/B族滑移线。滑移线在塑性区内构成的正交曲线网称户、1,滑移线网;滑移线网所覆盖的区域称滑移线场。由于滑b入八,‘/尹“移线网分布于整个塑性区并一直延伸到变形体边界,\\二十人寸t//故可根据相应边界条件,由亨基应力方程求解变形区乡袱l/V匕/尸飞由杯一占的亩六仆布_八尸冷匕二三已一一一一二一一—-一x 滑移线解法创立在20世纪20年代。1921年,普./(入入/\/省朗特(L .Prandtl)给出第一个以滑移线场求解变形力//k份件产狱学间题一平冲头压入半无限体的具体方法。卿3/小年,亨基提出了亨基应力方程。1930年,盖林格/(H.Geiringer)提出滑移线场相应速度方程的建立方二,二*、十、、‘,、、,、‘~,‘“‘“少‘产~叫’口1少~~‘,同一~~/J~“J~一/J图1滑移线方向和转角的标记法,从而克服了早期滑移线场只满足应力边界条件,而无法建立满足运动许可条件速度场的困难。其后托姆、二,、,、‘,。二二二六二.、二甘片D儿百思工例戍思叨k--r,不’下思仄胡川山雌’月似J。珊应力莫尔圆与物理平面平面变形塑性区某点尸列诺夫(A.江.ToM月eHoB)等人的著作推进了滑移线理论二、*二二*。.、,二。‘二二、*二,、二,二、。7”峭八、~户川阶JI七”u川寸八““旧’r’民越“旧’少成~卜‘的应力状态可以图2a所示的应力莫尔圆表示,过p的进展。1950年,希尔(R .Hill)等使滑移线理论更系*二、,‘*‘二,二、,。,‘二二一‘、、,、。口”扛仄。工““U甲’布小、加“川/寸仄’日”夕城性卜‘天不点的各特定物理平面如图2b所示。二者的关系为:莫统化并解决不少平面变形的实际间题。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条