1) magnetohydrostatic
磁流体静力学的
2) magneto-fluid statics
磁流体静力学
4) magnetohydrodynamic
[mæɡ'ni:təu,haidrəudai'næmik]
磁流体动力学的
5) hydrostatics
[英][,haidrəu'stætiks] [美][,haɪdrə'stætɪks]
流体静力学
1.
Explaining tidal phenomenon from hydrostatics viewpoint;
用流体静力学观点解释潮汐现象
2.
And the results show that hydrostatics is the basis of design theory of piston-type booster.
认为井底增压器利用流体静力学原理,在活塞上、下腔形成压力差,驱动活塞往复运动,以钻井液为工作介质,通过把钻井液的压力能转换为机械能,再把机械能转换为一小部分钻井液的压力能的方法实现增压功能;增压器性能取决于活塞上、下腔压力差和增压比,提高上、下腔压力差可以采用2级活塞并联的形式,得出的结论对增压器设计具有指导意义。
6) hydrostatic
[英][,haidrə'stætik] [美][,haɪdrə'stætɪk]
流体静力的
补充资料:磁流体静力学
磁流体力学的一个分支,研究导电流体在磁场力作用下的静平衡问题。在磁场作用于流体中的电流时,一般会使流体流动;如果磁场力同流体的压强梯度平衡,则流体保持静止。研究这种平衡对受控热核反应有重要意义,可以利用磁场约束温度达亿度量级的等离子体。
在静止状态下,作用于流体微团 Q上的体积力-墷p(p为流体压强)同磁场 B作用于电流密度J上的力密度J×B(见洛伦兹力)是平衡的,即墷p=J×B(图1)。在天体问题中有时还须考虑引力的作用。从图1中可以看出:压强梯度墷p垂直于电流和磁场;沿磁力线和电流线的压强不变。若磁力线绕成一个闭合曲面(即磁面)而把等离子体包起来,则磁面就是等压面。在受控热核反应装置中,就是利用磁面一层层地把等离子体约束起来,压强从里层到外层逐渐下降为零。电流线位于同墷p相垂直的面上,故磁面也是电流面。
根据磁流体静平衡而设计的磁约束结构主要有:
①线箍缩 在圆柱形放电管中通以强大的轴向电流以压缩等离子体的磁结构(图2)。沿管轴向流动的电流密度J 产生角向(环绕圆管的)磁场B。作用在圆柱等离子体中任一点Q的磁场力有两上分力;一是磁向心力;另一是负磁压梯度,指向圆心。这两个分力同负压强梯度平衡。线箍缩是重要的静磁结构之一,但其中等离子体的平衡是不稳定的。
②角箍缩 又称θ箍缩,与线箍缩不同的是电流方向和磁场方向互换(图3)。在包围放电管的金属导体中突然放电,在金属导体和等离子体柱之间的区域中产生均匀轴向磁场B。由于趋肤效应,磁场不能透入等离子体,故在等离子体表面感应出同放电电流相反的角向电流,因而等离子体柱就在磁场力作用下被箍缩。这时,等离子体表面受到一和压强p大小相等但方向相反的磁压B2/2μe作用而维持平衡(μe为磁导率)。
③环形轴对称磁约束结构 线箍缩和角箍缩的共同缺点是等离子体中的粒子会从两端逸出,为此研制出箍缩等离子体的环形轴对称环流器托卡马克(Tokamak)。这种装置的每一层磁力线和电流线都各绕成同一个闭合曲面(图4),这些曲面称为磁面或电流面。磁场力J×B指向等离子体内部。每一层磁面都是等压面;等离子体环中心压强最高,压强从中心到外层逐层降低为零。因此,等离子体环完全可以通过磁场力来箍缩。
参考书目
V.C.A.Ferraro and C. Plumpton, Introduction toMagneto-fluid Mechanics,Oxford,Univ.Press,London,1961.
在静止状态下,作用于流体微团 Q上的体积力-墷p(p为流体压强)同磁场 B作用于电流密度J上的力密度J×B(见洛伦兹力)是平衡的,即墷p=J×B(图1)。在天体问题中有时还须考虑引力的作用。从图1中可以看出:压强梯度墷p垂直于电流和磁场;沿磁力线和电流线的压强不变。若磁力线绕成一个闭合曲面(即磁面)而把等离子体包起来,则磁面就是等压面。在受控热核反应装置中,就是利用磁面一层层地把等离子体约束起来,压强从里层到外层逐渐下降为零。电流线位于同墷p相垂直的面上,故磁面也是电流面。
根据磁流体静平衡而设计的磁约束结构主要有:
①线箍缩 在圆柱形放电管中通以强大的轴向电流以压缩等离子体的磁结构(图2)。沿管轴向流动的电流密度J 产生角向(环绕圆管的)磁场B。作用在圆柱等离子体中任一点Q的磁场力有两上分力;一是磁向心力;另一是负磁压梯度,指向圆心。这两个分力同负压强梯度平衡。线箍缩是重要的静磁结构之一,但其中等离子体的平衡是不稳定的。
②角箍缩 又称θ箍缩,与线箍缩不同的是电流方向和磁场方向互换(图3)。在包围放电管的金属导体中突然放电,在金属导体和等离子体柱之间的区域中产生均匀轴向磁场B。由于趋肤效应,磁场不能透入等离子体,故在等离子体表面感应出同放电电流相反的角向电流,因而等离子体柱就在磁场力作用下被箍缩。这时,等离子体表面受到一和压强p大小相等但方向相反的磁压B2/2μe作用而维持平衡(μe为磁导率)。
③环形轴对称磁约束结构 线箍缩和角箍缩的共同缺点是等离子体中的粒子会从两端逸出,为此研制出箍缩等离子体的环形轴对称环流器托卡马克(Tokamak)。这种装置的每一层磁力线和电流线都各绕成同一个闭合曲面(图4),这些曲面称为磁面或电流面。磁场力J×B指向等离子体内部。每一层磁面都是等压面;等离子体环中心压强最高,压强从中心到外层逐层降低为零。因此,等离子体环完全可以通过磁场力来箍缩。
参考书目
V.C.A.Ferraro and C. Plumpton, Introduction toMagneto-fluid Mechanics,Oxford,Univ.Press,London,1961.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条