说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 冲力函数
1)  impulse function
冲力函数
2)  stress impuls function
应力冲量函数
3)  impulse function
脉冲函数
1.
Based on the method of anti-seismic computation of underground structure and the theory of impulse response function, a generalized impulse function method applied to the time ?history seismic response of underground structure was proposed.
计算结果表明,脉冲函数法用于地下结构动力分析,具有较高的计算精度,且计算效率会大大提高。
4)  conflict function
冲突函数
1.
At the same time,we define a conflict function induced by this similarity measurement which can explain the conflict a.
为了确立基于Vague集的冲突系统的联盟,分析了各种基于Vague集的相似度量的不足,在此基础上给出了一种新的基于Vague集的相似度量,同时定义了一个由该相似度量诱导出的冲突函数,新冲突函数可以很好地解释基于Vague集的冲突系统中局中人之间的冲突。
5)  Impulse function
冲激函数
1.
Period impulse function and Riemann lemma;
周期冲激函数与黎曼引理
2.
On a property of impulse function;
关于冲激函数的一个性质
3.
When there are impulse functions or its derivative and its integral in the convolution, the computation will be convenient if we use the operator methods and combine the basic properties of the convol.
如果参与卷积运算的函数含冲激函数或它的导数和积分,那么用算子法并结合卷积的基本特性计算则较方便。
6)  pulse function
脉冲函数
1.
Equivalent load density models for feeders based on pulse function;
采用脉冲函数建立馈线等效负荷密度模型
2.
The breakdown current and the corona current are represented by a new pulse function and a double exponential function respectively.
用一种新型脉冲函数表示回击中击穿电流 ,电晕电流用双指数函数表达 。
3.
With the pulse function completely shows that the forces that the pellet receives With step function deduces the equation of the pellet s movemen
利用脉冲函数整体地表达出了小球所受的力 ,结合阶跃函数推导出了小球的运动方
补充资料:应力函数和位移函数
      在弹性力学中,为方便求解,常把应力或位移用几个任意的或某种特殊类型的函数表示,这些函数通常叫作应力函数或位移函数。
  
  应力函数  最有名的应力函数是弹性力学平面问题中的艾里应力函数。如果没有体力,平面中的三个应力分量σxx、σyy、τxy满足下列方程:
  
  
   。
   (1)根据方程(1),可将应力分量用一个函数φ(x,y)表示为:
  
  。
   (2)φ便是艾里应力函数。对于均匀和各向同性的物体,φ是一个双调和函数,即它满足下列双调和方程:
  
  
  
  
  ΔΔφ=0,
  
  
  
  
   (3)式中是平面的拉普拉斯算符。引入φ后,平面问题原来的8个未知函数(两个位移分量、三个应变分量和三个应力分量σxx、σyy、τxy就归结为一个函数φ。这对求解具体问题很有好处。
  
  在弹性柱体的扭转问题中,剪应力分量τxz、τyz满足下列平衡方程:
  
  
  
   。
  
  
    (4)据此可将τxz、τyz用一个函数Ψ(x,y)表示为:
  
  
   。
  
  
   (5)Ψ称为普朗特应力函数。对于均匀和各向同性的柱体,Ψ满足下列方程:
  
  
  
  
   ΔΨ=-2Gθ,
  
  
  
   (6)式中G为材料的剪切模量(见材料的力学性能);θ为单位长度的扭转角。
  
  位移函数  在求解弹性力学的空间问题时,也可以用六个应力函数代替原来的六个应力分量,但好处不多。所以,一般多采用各种位移函数。对于均匀和各向同性弹性体,位移分量u1、u2、u3满足下列平衡方程:
  
   式中是空间中的拉普拉斯算符;ν为材料的泊松比;G为剪切模量;┃i为体力分量。方程(7)的解可以表达成多种形式。一种形式为: 式中ψ1、ψ2、ψ3、嫓四个函数满足下列方程:
  
   。 (9)函数ψ1、ψ2、ψ3、嫓称为布森涅斯克-帕普科维奇-纽勃位移函数。 弹性力学中许多空间问题的解都是从公式(8)推导出来的。
  
  方程(7)还有另一种形式的解,即
  
   式中Fi满足下列方程:
  
  
  
   。
  
  
  (11)函数F1、F2、F3称为布森涅斯克-索米利亚纳-伽辽金位移函数。对于回转体的轴对称问题,公式(10)可作许多简化。取对称轴为z轴(x3轴),记r为所考虑点到z轴的距离,并记位移在r、z轴上的投影分别为u、ω。若┃1=┃2=0,可取F1=F2=0,F3=F(r,z)。这样,由公式(10)可得到:
  
    ,
    (12)式中,即柱坐标中的拉普拉斯算符;F满足下列方程:
  
  
    
    。
  
  
    (13)
   公式(12)中的函数F称为乐甫位移函数。 在求解轴对称问题时,经常利用公式(12)。
  
  在┃1=┃2=0的情况下,即使不是轴对称问题,方程(7)的解也可用一组位移函数F、┃表示如下:
  
  
    式中F、┃满足下列方程:
  
  
  
   , Δ┃=0。
   (15)这组位移函数特别适用于求解无限体、半无限体和厚板等问题。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条