1) oil vapor velocity
油汽速度
2) Steam injection rate
注汽速度
1.
Through numerical modelling, this paper studies the process parameters of steam drive such as steam injection rate, production injection ratio, and steam quality.
利用数值模拟方法对蒸汽驱中注汽速度、采注比和蒸汽干度等工艺参数进行了研究。
3) automobile velocity
汽车速度
1.
Based on digital circuit,originating from the induced current varing with the automobile velocity magnitude,this device creats controlling signal through a series of digital IC.
本装置建立在数字电路基础上,将与汽车速度相关的感生电流信号通过一系列的数字集成电路处理,用于控制汽车发动机电路,达到车速控制的目的。
2.
This paper discusses the importance of the security analysis of automobile velocity, introduces the fuzzy inference method, states how to analyze the security of automobile velocity with fuzzy inference in detail.
本文讨论进行汽车速度安全分析的必要性,简单介绍了模糊推理方法,详细阐述 如何应用模糊推理实现汽车速度的安全分析。
4) velocity of steam
蒸汽速度
5) exit velocity
排汽速度
6) Gasoline density
汽油密度
1.
For it is difficult to get the carbon-hydrogen ratio of gasoline during themeasuring of petrol fuel consumption with carbon balance method, according to therelationship between carbon-hydrogen ratio and gasoline density, a simple mathematicalmodel is derived as a new method for the measuring of gasoline carbon-hydrogen ratio inpractice.
鉴于用碳平衡法测量汽油机耗油量时汽油碳氢质量比难以测定,根据汽油碳氢质量比与汽油密度的对应关系,导出了汽油碳氢质量比与密度关系的简单数学模型,为汽油碳氢质量比的测定提供了一种新的方法。
补充资料:抽汽式汽轮机
由汽轮机中间级抽出一部分蒸汽供给用户,即在发电的同时还供热的汽轮机。根据用户需要可以设计成一次调节抽汽式或二次调节抽汽式。
一次调节抽汽式汽轮机 又称单抽汽式汽轮机。由高压部分和低压部分组成,相当于一台背压式汽轮机与一台凝汽式汽轮机的组合。新汽进入高压部分作功,膨胀至一定压力后分为二股,一股抽出供给热用户,一股进入低压部分继续膨胀作功,最后排入凝汽器。抽汽压力设计值根据热用户需要确定,并由调压器控制,以维持抽汽压力稳定。单抽汽式汽轮机的功率为高、低压部分所生产功率之和,由进汽量和流经低压部分蒸汽量所决定。调节进汽量可以得到不同的功率。因此,在一定范围内,可同时满足热、电负荷需要。单抽汽式汽轮机在供热抽汽量为零时,相当于一台凝汽式汽轮机;若将进入高压缸的蒸汽全部抽出供给热用户,则相当于一台背压式汽轮机。但实际运行中,为了冷却低压缸,带走由于鼓风摩擦损失所产生的热量,必须有一定量的蒸汽流过低压部分进入凝汽器,所需最小流量约为低压缸设计流量的10%。单抽汽式汽轮机的工况如图所示,它表示出新汽量(Do)、抽汽量(Ce)、电功率(Ni)三者之间的关系;图中Do表示凝汽量,ohh线为抽汽量为零时的凝汽工况线,cdd 线为抽汽量等于新汽量时的背压工况线,在以上两线之间为等抽汽量与等凝汽量工况线,它表示在不同抽汽量下与不同凝汽量下全机电功率与蒸汽流量的关系。在最大抽汽量下汽轮发电机组的最大电功率如图中e点所示;图中如已知Do、De、Do和Ni4个量中的任何两个量,可求得另外两个量。
二次调节抽汽式汽轮机 又称双抽汽式汽轮机。可以同时满足不同参数的热负荷。整个汽轮机分为高、中、低压 3部分。新汽进入高压部分作功,膨胀到一定压力,抽出一部分蒸汽供给热用户;另一部分进入中压部分继续膨胀作功后,再抽出一部分供暖,其余蒸汽经过低压部分排入凝汽器。
双抽汽式汽轮机的工况图是按照一定的典型系统和额定参数绘制的。若汽轮机运行条件不同于绘制工况时,应进行适当修正。调节抽汽式汽轮机各缸均单独设置配汽机构,分别控制各缸进汽量。中、低压缸配汽机构有调节阀和旋转隔板两种形式。功率较小的抽汽机组采用旋转隔板形式有利于设计成单缸结构;高压缸则普遍采用喷嘴调节方式,调节级多数为双列级,以保证有足够大的通流能力。
双抽汽式汽轮机在高、低压缸流量均接近设计值时具有较高的发电经济性。由于热负荷的变化,有时流经各缸的流量差别很大,在某些工况下发电经济性较低。因此,调节抽汽式汽轮机应根据主要热负荷情况进行设计,合理分配各缸流量,以保证长期运行中有较高经济性。合理选定抽汽压力对机组经济性有明显影响,在满足热用户前提下,应尽量降低抽汽压力。早期生产的供暖抽汽机组,抽汽压力为0.12~0.25兆帕,近年已将下限降为0.07兆帕。
一次调节抽汽式汽轮机 又称单抽汽式汽轮机。由高压部分和低压部分组成,相当于一台背压式汽轮机与一台凝汽式汽轮机的组合。新汽进入高压部分作功,膨胀至一定压力后分为二股,一股抽出供给热用户,一股进入低压部分继续膨胀作功,最后排入凝汽器。抽汽压力设计值根据热用户需要确定,并由调压器控制,以维持抽汽压力稳定。单抽汽式汽轮机的功率为高、低压部分所生产功率之和,由进汽量和流经低压部分蒸汽量所决定。调节进汽量可以得到不同的功率。因此,在一定范围内,可同时满足热、电负荷需要。单抽汽式汽轮机在供热抽汽量为零时,相当于一台凝汽式汽轮机;若将进入高压缸的蒸汽全部抽出供给热用户,则相当于一台背压式汽轮机。但实际运行中,为了冷却低压缸,带走由于鼓风摩擦损失所产生的热量,必须有一定量的蒸汽流过低压部分进入凝汽器,所需最小流量约为低压缸设计流量的10%。单抽汽式汽轮机的工况如图所示,它表示出新汽量(Do)、抽汽量(Ce)、电功率(Ni)三者之间的关系;图中Do表示凝汽量,ohh线为抽汽量为零时的凝汽工况线,cdd 线为抽汽量等于新汽量时的背压工况线,在以上两线之间为等抽汽量与等凝汽量工况线,它表示在不同抽汽量下与不同凝汽量下全机电功率与蒸汽流量的关系。在最大抽汽量下汽轮发电机组的最大电功率如图中e点所示;图中如已知Do、De、Do和Ni4个量中的任何两个量,可求得另外两个量。
二次调节抽汽式汽轮机 又称双抽汽式汽轮机。可以同时满足不同参数的热负荷。整个汽轮机分为高、中、低压 3部分。新汽进入高压部分作功,膨胀到一定压力,抽出一部分蒸汽供给热用户;另一部分进入中压部分继续膨胀作功后,再抽出一部分供暖,其余蒸汽经过低压部分排入凝汽器。
双抽汽式汽轮机的工况图是按照一定的典型系统和额定参数绘制的。若汽轮机运行条件不同于绘制工况时,应进行适当修正。调节抽汽式汽轮机各缸均单独设置配汽机构,分别控制各缸进汽量。中、低压缸配汽机构有调节阀和旋转隔板两种形式。功率较小的抽汽机组采用旋转隔板形式有利于设计成单缸结构;高压缸则普遍采用喷嘴调节方式,调节级多数为双列级,以保证有足够大的通流能力。
双抽汽式汽轮机在高、低压缸流量均接近设计值时具有较高的发电经济性。由于热负荷的变化,有时流经各缸的流量差别很大,在某些工况下发电经济性较低。因此,调节抽汽式汽轮机应根据主要热负荷情况进行设计,合理分配各缸流量,以保证长期运行中有较高经济性。合理选定抽汽压力对机组经济性有明显影响,在满足热用户前提下,应尽量降低抽汽压力。早期生产的供暖抽汽机组,抽汽压力为0.12~0.25兆帕,近年已将下限降为0.07兆帕。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条