1) molecular symmetry
分子对称
2) symmetrical molecule
对称分子
4) asymmetric molecule
不对称分子
5) molecular asymmetry
分子不对称
6) asymmetrical copolymer
非对称高分子
补充资料:分子对称性
分子常常因含有若干相同原子或基团(见基)而具有某种对称性。如果分子经过某种对称操作后,与未经操作的原有分子无法分辨,则按对称操作的种类而称该分子具有某种对称性。
孤立分子的对称操作仅有四种(不动或还原一般不应是对称操作,但也常包括在内,这样则为五种):①分子绕一个轴旋转2π/n角,如旋转后能恢复原状,则此轴称为n次对称轴,而这种对称操作称为旋转2π/n角;②分子在一假想平面的镜面中反射,如经过反射后恢复原状,则此假想平面称为分子的对称面,这种对称操作称为反射;③将分子上各点对称地移到该点与假想点连线上的另一方同距离处,如分子各点经如此操作后恢复原状,则此假想点称为分子的对称中心,这种对称操作称为反演;④分子先在一轴进行2π/n角旋转,然后再在垂直于这个轴的一个平面上反射,如经过这一复合操作使分子恢复原状,则此轴称为n次非正常旋转对称轴,这种操作称为非正常2π/n角旋转。例如,yz面上的水分子的形状如图1所示,它有一个二次旋转对称轴(简称2次轴),及两个互相垂直的对称面。甲烷是一正四面体形的分子,碳居正中,四个氢原子各占一顶点,这个分子有四个3次轴、三个2次轴、六个对称面和三个非正常4次轴;乙烯则有三个2次轴、一个对称中心和三个对称面;甲烷和乙烯的对称性图见图2。在分子中n的值可以为2,3,4,5,6,7,...,∞等,直线分子有一个∞次轴,通常以n等于2,3,4,6等值为多。n=1即不动,一般不计在内。
具有对称性的分子的许多性质均受其对称性的影响。例如有无偶极矩、光谱的选择定则等均可从其对称性预测。在量子力学计算中常利用分子的对称性而使计算简化。
孤立分子的对称操作仅有四种(不动或还原一般不应是对称操作,但也常包括在内,这样则为五种):①分子绕一个轴旋转2π/n角,如旋转后能恢复原状,则此轴称为n次对称轴,而这种对称操作称为旋转2π/n角;②分子在一假想平面的镜面中反射,如经过反射后恢复原状,则此假想平面称为分子的对称面,这种对称操作称为反射;③将分子上各点对称地移到该点与假想点连线上的另一方同距离处,如分子各点经如此操作后恢复原状,则此假想点称为分子的对称中心,这种对称操作称为反演;④分子先在一轴进行2π/n角旋转,然后再在垂直于这个轴的一个平面上反射,如经过这一复合操作使分子恢复原状,则此轴称为n次非正常旋转对称轴,这种操作称为非正常2π/n角旋转。例如,yz面上的水分子的形状如图1所示,它有一个二次旋转对称轴(简称2次轴),及两个互相垂直的对称面。甲烷是一正四面体形的分子,碳居正中,四个氢原子各占一顶点,这个分子有四个3次轴、三个2次轴、六个对称面和三个非正常4次轴;乙烯则有三个2次轴、一个对称中心和三个对称面;甲烷和乙烯的对称性图见图2。在分子中n的值可以为2,3,4,5,6,7,...,∞等,直线分子有一个∞次轴,通常以n等于2,3,4,6等值为多。n=1即不动,一般不计在内。
具有对称性的分子的许多性质均受其对称性的影响。例如有无偶极矩、光谱的选择定则等均可从其对称性预测。在量子力学计算中常利用分子的对称性而使计算简化。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条