1) isologous series
同构系
2) homogeneous system
同构系统
4) relational isomorphism
关系同构
1.
Thus,the relational matching problem results in the problem of relational isomorphism or consistent labelling.
提出一种用于描述三维工业物体的关系数据结构,将关系匹配归结为一个关系同构或协调标号问题。
5) coefficient of isomorph
同构系数
1.
Within a certain text, when the coefficient of isomorph is big enough, i.
当特定语篇中两语的同构系数大,易码不会引起误解或曲解时,翻译就是简单的语符对换,那么可易度与同构系数成正比;当易码不能满足翻译要求时,需要创造性的翻译,不同的翻译目的可以引起不同的可译度。
6) system isomorphism
系统同构
补充资料:代数系统的自同构
代数系统的自同构
algebraic system, automorphism of
xZ一,、、映射 ‘净f。(久.‘2,x。“(戊任B)是B的一个自同构.类只的每一系统A的所有l自同构构成的集合I(A)是群Aut(A)的‘个正规子群.在由所有群构成的类只中,I自同构概念与群的内自同构概念是一致的([21).关于更一般的几系统的公式自同构(formula automorphism)概念,见【3]. 设A是一个代数系统,把A中的每个基本运算F换为谓词 R仁〕,.二,义。,川幼月x,、…,工,》三_丫 (芍,丫,少任A),就得到一个表不系统A的模型(model)A’.等式Aut(A‘)=Aut(A)成立.如果系统A=丈A,Q>和A‘=戈通,Q’飞有公共的支集A,并且0仁0‘,那么Aut(A)三Aut(A’)如果具有有限生成兀集合的Q系统A是有限可逼近的,那么群Ant(A)也是有限可逼近的(见!l〕).设只是O系统的一个类,并且设Aut(幻是由所有同构于群Ant(A)(A任交)的群构成的类,并I{t设SAnt(究)是由Au飞(贾)中的群的子群构成的类类SAut(究)由可同构嵌人到群Aut(A)(A任交)中的群构成的类. 下面两个问题来自代数系统自同构群的研究中. l)给定一个O系统的类只我们能对A以(,时和SAut(屁)说些什么昵‘} 2)设给定一个(抽象的)群类K.是否存在个具有给定表征Q的O系统类究使得人二Aut(只),共至K二SAut(们呢?已经证明,对任意的可公理化的模型类只群类SAut(欠是全称可公理化的(f1」).也已经证明(111[’]),如果只是由无限模型构成的可公理化模型类又B,簇)是一个全序集合G是模型(B簇)的自同构群,那么存在一个模型Ae转使得A户B.并冬1对每个元素g任G,存在系统A的自同构中使得g(、)二价扛)(对所有、6B).1)如果对任一由无限模型构成的可公理化模型类只,都有群(F‘SAut(只),那么就称群G是万有的,2)如果群G同构于序群H的〔见全序群( totally ordered group))某一个自同构群(这个.匀同构群中的儿素保持H中给定的全序即“感乃净价(a)蕊甲(b)对所有ab任月.甲任G).那么就称G为序群H的一个序自同构群(goup of()rdered automorphlsms). 设l是全序集
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条