1) stiffened skin
有加强肋的壳体
3) rib reinforc ed board
有加强肋板件
4) externally ribbed housing
外部有加强筋的外壳
5) circumferentially stiffened non-circular cylindrical shell
环肋加强非圆柱壳
1.
A novel method for analyzing circumferentially stiffened non-circular cylindrical shells subjected to external pressure;
环肋加强非圆柱壳的齐次扩容精细积分法
2.
The systemic and thorough researches on the strength problem of circumferentially stiffened non-circular cylindrical shells have been carried out in this thesis supported by the project be accomplished by cooperated with Wuhan Ship Design & Development Institute.
本学位论文在中国船舶重工集团公司的横向协作项目资助下,针对环肋加强非圆柱壳的强度问题进行了系统、深入的研究,重点放在建模、求解方法以及基本力学特性分析上面。
6) circular cylindrical shell stiffened by ring and bulkhead
环肋和舱壁加强圆柱壳
补充资料:横向磁场中的空心超导圆柱体(hollowsuperconductingcylinderinatransversalmagneticfield)
横向磁场中的空心超导圆柱体(hollowsuperconductingcylinderinatransversalmagneticfield)
垂直于柱轴(横向)磁场H0中的空心超导长圆柱体就其磁性质讲是单连通超导体。徐龙道和Zharkov由GL理论给出中空部分的磁场强度H1和样品单位长度磁矩M的完整解式,而在`\zeta_1\gt\gt1`和$\Delta\gt\gt1$条件下为:
$H_1=\frac{4H_0}{\zeta_1}sqrt{\frac{\zeta_2}{\zeta_1}}e^{-Delta}$
$M=-\frac{H_0}{2}r_2^2(1-\frac{2}{\zeta_2})$
这里r1和r2分别为空心柱体的内、外半径,d=r2-r1为柱壁厚度,ζ=r/δ(r1≤r≤r2),Δ=d/δ,δ=δ0/ψ,δ0为大样品弱磁场穿透深度,ψ是有序参量。显然此时H1→0,M→-H0r22/2,样品可用作磁屏蔽体。当$\zeta_1\gt\gt1$,$\Delta\lt\lt1$时,则
H1=H0/(1 ζ1Δ/2),
M=-H0r23[1-(1 ζ1Δ/2)-1]。
若$\zeta_1\Delta\gt\gt1$,则$H_1\lt\ltH_0$或H1≈0。所以,虽然$d\lt\lt\delta$,但磁场几乎为薄壁所屏蔽而难于透入空心,称ζ1Δ/2为横向磁场中空心长圆柱体的屏蔽因子。当$\zeta_1\Delta\lt\lt1$时,则H1≈H0,磁场穿透薄壁而均进入空腔,失去屏蔽作用,此时M≈0。类似于实心小样品,由GL理论可求出薄壁样品的临界磁场HK1,HK,HK2和临界尺寸等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条