1) self-phasing code
自同步码
2) Self-sychronization scrambling
自同步扰码
3) self-synchronous chaotic cipher
自同步密码
1.
In this paper the authors analysis the law of information leak of self-synchronous chaotic ciphers,hereby present a divide-and-conquer attack to self-synchronous chaotic ciphers,which is the first attack of this kind in this area.
本文以Hong Zhou等提出的自同步混沌密码为例,完成了对密钥规模为64比特且以混沌映射的65次迭代为自同步映射的自同步密码的分割攻击。
4) self-synchronizing stream cipher
自同步流密码
1.
A two-dimensional one-way coupled map lattice is proposed for cryptography of self-synchronizing stream cipher,which N2 space units produce chaotic stream outputs in parallel.
提出了由单向二维耦合的映象格点组成新的时空混沌自同步流密码系统,它能够产生并输出N2个平行混沌流密码。
5) start stop self-phasing code
启停式自同步码
6) the self-synchronous stream cipher
自同步序列密码
1.
In this paper,after a brief overview of the self-synchronous stream cipher,a specific design of these modules was made.
自同步序列密码是流密码当中的一种,其具有很好的自同步的特性。
补充资料:同步码
具有帧同步能力的码字。在数字通信系统中,代表消息的数字信号是分帧传送的,即用一定数目的码元组成一个码字,由若干码字组成一帧。接收端必须按每一个码字的起止位置进行译码。
50年代初,R.H.巴克提出以一种特殊形式的数字序列加在每一帧的前头作同步信号,这个数字序列常称为巴克码。二元巴克码是由N个有限数目的±1符号组成的,其自相关函数R(j)的定义为
当N=7,巴克码的前后数据符号全为零时,其自相关特性如图所示。由于巴克码在位移j=0时有尖锐的自相关特性,因此,接收端对收到的数字序列进行相关运算,便可确定帧和码字的起止位置。此外,维列码、诺曼-霍夫曼码也是具有良好性能的同步码。在卫星通信的时分多址系统中,采用具有良好自相关特性和低的互相关函数值的独特码作帧同步码。这种码为获得帧同步而增加的剩余度,并不能提高码元纠正加性差错的能力。
50年代末,S.W.戈洛姆等提出无逗号的码。如码长为n的任意两个码字A=a1a2a3...an和B=b1b2b3...bn,则
ajaj+1...anb1b2...bj-1 (j=2,3,...,n)
均不可能构成可用码字。因此,无逗号码仅是某一码集中一个小子集,虽然它具有自同步能力,但通常没有加性差错的纠正能力和不能提供足以译码的代数特性。60年代中期,E.J.韦尔登和R.C.博斯等提出了可同步的纠错码,如扩展的循环码,它是能纠正码元加性差错和码字失同步的码。
50年代初,R.H.巴克提出以一种特殊形式的数字序列加在每一帧的前头作同步信号,这个数字序列常称为巴克码。二元巴克码是由N个有限数目的±1符号组成的,其自相关函数R(j)的定义为
当N=7,巴克码的前后数据符号全为零时,其自相关特性如图所示。由于巴克码在位移j=0时有尖锐的自相关特性,因此,接收端对收到的数字序列进行相关运算,便可确定帧和码字的起止位置。此外,维列码、诺曼-霍夫曼码也是具有良好性能的同步码。在卫星通信的时分多址系统中,采用具有良好自相关特性和低的互相关函数值的独特码作帧同步码。这种码为获得帧同步而增加的剩余度,并不能提高码元纠正加性差错的能力。
50年代末,S.W.戈洛姆等提出无逗号的码。如码长为n的任意两个码字A=a1a2a3...an和B=b1b2b3...bn,则
ajaj+1...anb1b2...bj-1 (j=2,3,...,n)
均不可能构成可用码字。因此,无逗号码仅是某一码集中一个小子集,虽然它具有自同步能力,但通常没有加性差错的纠正能力和不能提供足以译码的代数特性。60年代中期,E.J.韦尔登和R.C.博斯等提出了可同步的纠错码,如扩展的循环码,它是能纠正码元加性差错和码字失同步的码。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条