1) rivetset
铆钉用具
2) jam hammer
铆钉顶具
3) riveting tool
铆钉工具
4) riveting set
铆钉工具组
6) rivet nut header tool
铆钉头锻造工具
补充资料:光子选通光谱烧孔光存储材料
光子选通光谱烧孔光存储材料
photogated spectral hole burning optical storage materials
光子选通光谱烧孔光存储材料photogatedsPeetral hole burning oPtieal storage materials当有选通光存在时,利用窄线激光光束,在材料的不均匀增宽吸收线上烧出持久光谱孔,作为二进制数字编码的光盘存储材料。由于增加了频率范畴的烧孔,使原有平面内的烧孔密度进一步扩大。这实际上是一种高密度频域光存储材料。 激光引起的持久光谱烧孔现象在许多有机和无机系统中存在,其中由于光学中心微观环境的不等价效应,引起吸收线的不均匀增宽。在这种情况下,吸收线内特定频率的吸收是与某一等价中心子集相应的。这样,利用一线宽适当窄的可调谐激光束,就能在不均匀线内选择一组吸收与激光频率共振的子集(离子或分子),激发或引起其产生光物理或光化学变化,而由于这种离子的减少,就引起原来不均匀增宽吸收线上相应频率处吸收的减少,形成凹陷,产生了所谓的持久光谱烧孔。 单频激光烧孔(或称单光子烧孔)作为光存储应用时,由于读出光与写入光频率相同,读出时仍有烧孔效应,反复读出后,不可避免地要引起孔的退化和信噪比的降低。 光子选通烧孔不同,其中,烧孔是经过两步过程完成的。第一步是选择激发过程,它保证在不同子集之间不发生相互作用的条件下,通过调谐激光频率,在不均匀增宽吸收线内选择一组离子(分子)子集激发,使之达到某一中间态;第二步是利用频率不同的选通激光,进一步作用于已被激发的离子(或分子),使其产生某种光物理或光化学变化(如光电离、光解离,施主受主电子转移等),由于这部分离子的减少,就在不均匀吸收线上产生了孔,在光存储应用中即表现为信息写入过程。信息的读出,也就是孔的探测过程。这时只须用一与选择激发同样频率范围的可调谐激光器,通过测吸收或激发光谱的方法,在整个不均匀吸收线上,探测有孔或无孔来完成。由于不加选通光,只用一束光探测,从而避免了孔退化和信噪比降低。 通常,光谱孔的频宽△。h近似地为均匀线宽的两倍,△。h一2△。H,在不均匀增宽线上能烧出孔的数目,可由不均匀线宽△。i对孔宽△。h之比(△。l’/△。h)来确定。在液氦温度下,对某些材料可达10“一10‘的量级。这样,对于一束聚焦到1召m直径的光斑点(其平面密度相当于107一10sbit/cm),利用光谱烧孔来存储信息,可将存储密度提高到10‘。bit/cm的量级。 这种烧孔大多在低温下进行。随着温度升高,孔宽增加,存储密度将减小。在一定的温度以上不再能烧孔,或已烧出的孔消失,从而达到擦除的目的。除了这种热擦除以外,低温下的孔主要通过特定波长的光照来擦除,因而被用来做可擦除光存储器件。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条