说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 微小功率
1)  micropower
微小功率
2)  microwave low-noise small-power
微波低噪声小功率
3)  low power microwave plasma source
小功率微波等离子体源
1.
The impedance matching of low power microwave plasma source was analyzed based on odd mode equivalent circuit and the interrelation between S parameter and microwave plasma impedance,and the discharges in various gas pressure were studied.
45 GHz小功率微波等离子体源,根据微带环缝谐振器的奇模等效电路,通过S参数与微波等离子体阻抗之间的关系,研究小功率微波等离子体源的阻抗匹配及其在不同气体条件下的放电规律。
4)  microwave power
微波功率
1.
Chip fabrication of microbridge structure thermocouple type microwave power sensor;
微梁结构热偶微波功率传感器芯片的制作工艺
2.
The effects of reaction temperature,liquid-to-solid ratio,microwave radiation time,microwave power etc.
5H2O)的工艺,考察了反应温度、液固质量比、微波辐射时间、微波功率等因素对硼酸锌产率和粒径分布的影响,通过优化实验,确定了最佳工艺条件。
3.
It was indicated that characters of sterilization was best when the microwave power was 600 W.
通过实验表明,牛乳中的微生物在微波功率为600W时致死特性最显著,同时也表明随着微波功率的变大,微波致死时间呈双曲线型下降,而生产效率呈线性逐渐增加。
5)  differential of cutting power
功率微分
6)  micro-power
微功率
1.
Introduced a micro-power isolated power supply of two-wire transmitter,which adopts high conversion efficients DC/DC chip MAX639 that offers high-performance of the power supply for two-wire intelligent transmitter.
介绍了一种用于两线制变送器的微功率隔离式电源,核心采用高转换效率的DC/DC芯片MAX639。
2.
This subject is application technique of micro-power short-range wireless communication, based on sensor technology and computer technology, and develop a new detection method.
本课题使用了微功率短距离无线通信技术,并且结合传感器技术和计算机技术开发一种新的检测方法,与传统的有线连接的检测技术相比,具有明显的优势,主要表现在:无需架设线路,不再受线路质量的影响,扩展十分方便,同时也降低了维护难度等。
补充资料:低噪声微波技术
      降低微波接收设备内部噪声的技术。其主要内容是微波低噪声(固态)器件技术和相应的微波电路技术,还涉及低温物理、量子力学等学科。微波波段接收设备的性能主要受其内部噪声的影响,外差式接收机的内部噪声取决于低噪声前端,可用噪声系数F(分贝)、有效噪声温度Te(K)或噪声量度M(分贝)等表征。接收设备的外部噪声取决于天空噪声温度极限,频率范围为0.1~1吉赫的外部噪声主要是银河系噪声;1~10吉赫范围内主要是宇宙背景噪声(3.4K),10吉赫以上则取决于大气噪声(对外空系统取决于宇宙背景噪声和光子噪声)。前端的有效噪声温度应与具体条件下作用于其输入端的外部噪声温度(主要是天线噪声温度Ta)相当。
  
  研究概况  随着半导体技术的发展,半导体器件以其明显的优越性逐步取代了电子管,因此,低噪声技术基本上就是固态低噪声技术。低噪声技术研究起始于40年代用于雷达的点触式半导体二极管混频器。自1958年变容二极管问世后,60年代起参量放大器(参放)得到广泛应用,同期还相继研制成量子放大器和隧道二极管放大器(隧放)。60年代中期,双极型晶体管的使用频率提高到微波波段,制成了L波段低噪声双极型晶体管放大器。1971年制成了微波砷化镓肖特基势垒栅的场效应晶体管,使低噪声技术进入了一个新的阶段。场效应晶体管放大器在高频率和低噪声方面显著优越于双极型晶体管,迅速取代了隧放和行波管放大器,且有逐步取代参放之势。现代在短毫米波段,二极管混频器几乎是唯一实用的低噪声检测手段。自60年代以来,对利用超导的约瑟夫逊结器件制成低噪声混频器和参放不断进行探索研究,已显示其在亚毫米至远红外波段的优越性(见超导性的微波应用)。
  
  应用  低噪声微波技术在通信、雷达、遥感、电子对抗等系统以及射电天文、精密测量等应用中起着重要的作用。在这些方面,除了低噪声指标之外,往往还须满足功率增益、频带宽度、线性工作范围、脉冲功率容量、抗电磁干扰、抗核辐射,以及适应恶劣环境的能力等技术要求。
  
  
  性能与水平  80年代前期的微波低噪声器件性能见图。量子放大器在 1~30吉赫频率有最低有效噪声温度(接近宇宙背景温度),但必须致冷至4K,技术复杂,设备庞大而昂贵,且频带很窄(相对带宽小于 1%)。参放提供常温下最低的有效噪声温度,致冷于20K还可进一步降低,其相对带宽可达20%,但在毫米波段性能和应用因泵源尚难解决而受到限制。在 1吉赫以下,双极型晶体管常用于廉价的放大器,而在1吉赫以上则广泛应用场效应晶体管放大器,它在常温下的噪声性能接近参放,在20K时可与参放媲美。80年代前期,场效应晶体管进入毫米波段(实现60吉赫噪声系数 7.1分贝,相应增益5.5分贝)。场效应晶体管具有稳定性好、线性工作范围大、频带宽(可实现信频程,甚至0~18吉赫的宽带平坦特性)、体积小、致冷简易等优点,但抗烧毁和耐峰值功率的能力比参放约低一个数量级。晶体管放大器适于制作微波集成电路。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条