1) chord line
弦线
1.
A new method to lay-off the circular curve——the polar coordinate of the chord line;
圆曲线测设新方法——弦线极坐标法
3) sinusoid
[英]['sainəsɔid] [美]['saɪnə,sɔɪd]
正弦曲线
1.
Illustrating ellipse and sinusoid curves,the coordinate conversion and programming in the process of using macro command were stated.
探讨了常见非圆弧曲线的加工方法,并以椭圆及正弦曲线为例,叙述了在使用宏指令加工过程中坐标值的数据转换及程序编制。
2.
In this paper we discuss the representation of integral circle,cycloid and sinusoid on a period by uniform C-B-splines of degree 3.
本文给出了整圆、一个周期上的摆线及正弦曲线的三次均匀C-B样条表示。
3.
A digital frequency synthesizer without ROM look up table is presented,a piecewise linear interpolation scheme is used to approximate a sinusoid function.
该方法使用具有分段连续的线性分段来近似正弦函数曲线的第一象限部分,根据正弦曲线的对称性,构成完整的正弦曲线。
4) chord and band course
弦腰线
1.
It can gain the perpendicular distance of chord and band course,consequently improving the precision of laneway’s forming and examing its quality conveniently.
用这种方法可求出弦腰线上任一点距竖曲线巷道底板的铅垂距离 ,从而提高巷道成形精度并方便质量检
5) Sine curve
正弦曲线
1.
Considering the sine curve as the primary equation of hydraulic geometry andsolving togather with continunity eqution of water flowing and other relative equations, depth, breadth and slope of sinuous channel have been deduced.
选用正弦曲线的河床形态作为原生的河相关系式,与水流连续性等方程联解,导出蜿蜒型河道的河相关系式。
2.
A real-time fast interpolation algorithm for hdical and sine curves based on the principleof time-slicing method is proposed.
提出了一种基于时间分割法的带前加减速控制的螺旋线及正弦曲线的快速插补算法,并分析了其插补精度;该算法具有速度快、精度高等优点。
3.
This paper discusses a method of synthesizing free curve and sine curve.
本文提出自由曲线和正弦曲线合成的方法,通过调整正弦曲线的幅值和频率,改变合成曲线的形状,这种方法易于实现和分解,并可用于描述随机形状。
6) chord-modulus
弦线模量
1.
The chord-modulus corrects this error and eliminates its difference.
弦线模量改正了这些指标的数值错误,消除了计算误差,从而成功地计算了黄土的湿陷变形。
2.
Presented in this paper are more than 40 tank s settlement situations,which illustrates that it s feasible to make the Settlement-Area Ratio computation based on the Chord-Modulus for the Control Criterion of the foundation design.
以40多台油罐的下沉情况说明,用弦线模量计算其沉降面积比作为基础设计的控制标准是可行的。
3.
The chord-modulus method of the foundation engineering which is based on the computation of soil deformation including the loessial collapse is advanced.
提出了以弦线模量计算地基变形(包括黄土的湿陷)的地基基础弦线模量设计法。
补充资料:余弦
余弦
amsoo
余弦10吐.此;劝。圈yc] 三角函数(trigonometric functions)之一: F=COSX.其定义域是整个实轴;值域是闭区间[一1,11;余弦是偶周期函数(周期为2动在余弦和正弦之间存在公式 s一n之x+eosZx二1卜在余弦和正割之间存在公式 1 ‘、OSX二—- SeC义余弦的导数是 (cosx)二一sln久余弦的积分是 fe(、sxdx=s‘nx升C余弦的级数展开是 厂x4__/一/一 COs‘二’一乞一+亩一“‘,一OO<‘<呱余弦的反函数是反余弦(aro汉万ine). 在复自变量:的余弦、正弦和指数函数之间存在Euler公式(Euler formula): 已二二cos之十万sin乙如果义是实数,则有 e‘x+e一‘文 co、x=一2如果:二:x‘纯虚数),则有 e久+e‘ COSlx二一牛厂-一二叻snx.其中姗h*是双曲余弦.为Al一叩bKoB撰【补注】自变量(角)伊的余弦的儿何解释如下所述.考虑原点为O的(复)平面上的单位圆工设势表不半径(看作是变动的)和正x轴之间的夹角.这时,cos印等于从T上对应f中的点e’,到_、轴的(带符号)的距离.亦见正弦(slne),
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条