1) Before and After Clause
前后条款
2) before and after clause
装前卸后条款
4) pre/post-condition
前(后)条件
5) testimonium
签名前条款
6) Article 8 Final Provisions
第8条 最后条款
补充资料:最弱前置条件方法
最弱前置条件方法
weakest pre-condition method
Zuiruo q.QnZhl tlQOJIan fangfa最弱前置条件方法(w“‘estp份conditionmethod)基于最弱前置条件的一种程序完全正确性证明方法。最谙前!条件指保证一个语句执行正常结束并满足结果断言的最弱前提条件。它是一个谓词公式,通常用饮夕(s,R)表示,这里,R是语句S执行后所期望的结果断言(后置断言)。 E.W.伪kstra在前后断言的基础上提出了最弱前置条件的概念,以及相应的程序设计演算,使程序设计和程序验证可同时进行。 对于E.W.列kstra所定义的语言,语句的语义通过最弱前置断言给出。t刃户(s,R)可通过逆向推理导出。例如:赋值语句的语义是双沪(x:=。,R)二R【x/。〕,即将R中x的所有自由出现同时代换成e。例如: 帅(“x:=x‘二”,x4=10)三((x、x)4=10)三(xs=10) 为了证明循环的终止性,E.W.则kstra引人了循环不变式和界函数。一般说来,一个循环呈如下形式: lin二r故nt:叫一进人循环前,不变式p真, 1加“nd:川一并且B真时t>0,t是循 环次数的上界 doB~I玉奖reaset,Strueod 一当B真时,使t递减并执 行S,S执行过程真 保持P {P八,B}一则循环必然终止且终止时 P真B假 若Q是s的执行能在有限时间内中止并满足R的任一前提条件,则必有Q=>u沪(s,R)。因此,证明前后断言Q{S}R只需先求出最弱前置断言双沪(S,R),再证明Q”双乡(s,R)。 当给定了Q和R,根据Q,R的结构,通过推导饮沪(S,R),可推出S的结构,从而将程序设计的过程变成数学推导的过程。例如,要设计一个循环IX),使得当满足前置断言Q和结果断言R,则P,t和B应满足Q=>P八加“nd:t,t镇0冷,B及P八,B冷R。这实际上给出了循环语句设计的原则。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条