1) internal photoelectric effect
内部光电效应
2) internal photoeffect
内光电效应
1.
The basic concepts of the pyroelectric and thermoelectric effects, as well as the internal photoeffect and external photoeffect are discussed.
讨论了热释电效应与热电效应、外光电效应与内光电效应的基本概念 ,对兼有热释电性及内光电效应的压电陶瓷进行了研究 ;对用该压电陶瓷本身制成的陶瓷变压器与太阳电池的集成器件进行了设计和实验 。
3) internal photoeffect
内光电效应<光>
4) external photoelectric effect
外部光电效应
5) intrinsic internal photoeffect
本征内光电效应
6) Internal effect
内部效应
1.
Firstly,this paper discusses the internal effects of corporate social responsibility from the perspective of corporate profits from businesses,competitiveness and growth.
从企业利润、竞争力和企业成长三个方面阐述了企业社会责任的内部效应问题;选择了62家工业工程类的上市公司,采用实证分析得出结论:企业本期承担社会责任对企业经济利润的影响为负;企业前期承担的社会责任对企业利润的影响为正;企业承担社会责任对企业竞争力的影响为正;企业承担社会责任对企业成长的影响为正,但不是很明显。
补充资料:固体中的光电效应
光束照射固体时,进入固体内部的光子如果直接与其中的电子起作用,会改变固体的电学性质,这类现象统称为固体的光电现象。这里要强调"直接"两字,如果光子不是直接与电子起作用,譬如说,是与固体点阵起作用,引起固体的温度升高,导致其电导改变,这一现象就不属于光电效应。
固体的光电效应有许多种:
光电导 固体受光照而改变其电导率,是最早发现的光电现象(W.史密斯,1873)。半导体和绝缘体都有这种效应(见半导体的光电导)。
光电子发射 固体受光照而向体外发射电子的现象。它是H.R.赫兹1887年在金属上发现的。根据光电子发射的研究,发展了有实用价值的光电管。其基本结构是:在抽空的玻璃管的一壁上蒸镀一层发射电子的材料,称为光阴极。再在它的前面安装一网状阴极。当阴极施加正电压,光束照射到光阴极时,从其中发射出来的电子就趋向阳极,形成光电流。测量光电流的大小就反映出入射光的强弱。评价光电管的品质的参量主要有两个:①引起光电子发射的入射光的最长波长,称为长波限。②每个入射光子所能引起的发射电子的数目,称为量子产额。工业生产的光电管大都用铯的化合物作光阴极。长波限在0.60~0.65微米,经过复杂的制作工艺,量子产额可略略超过10%。另有一种光阴极称为S-I光阴极,长波限可达1.1微米,但这时的量子效率已低于0.1%。正在发展中的新光阴极是在Ⅲ-Ⅴ族半导体(二元或三元)上加一薄层铯的氧化物。长波限可超过1.1微米。在1.1微米处的量子产额比S-I光阴极材料至少大十倍。
光扩散效应 半导体中有两种载流子,即带负电的电子和带正电的空穴。光束照射半导体样品的一个表面时,如果光子的能量适当,就能同时产生电子和空穴。在接近光照面处,光子激发出来的电子和空穴的浓度很大,越向体内,浓度越小。这一浓度梯度促使电子和空穴都向体内扩散。但两者的扩散速度不同,一般说来,电子扩散速度较大,因而电子先扩散到样品的背光那一面,在样品中建立起一个阻止电子扩散而加速空穴扩散的电场。达到稳定状态时,电场的大小正好使电子流密度和空穴流密度相等。这时在样品的两边之间建立起一开路电压,称为扩散电压(图a)。这个现象称为光扩散效应,也称丹倍效应。光扩散电压比较小,常常被其他更显著的效应所遮盖,不易测量。
光生伏打效应 如果半导体中有一个PN结平行于光照面。光照下,P区和N区之间会产生电动势(图b),称为光生伏打效应。同样现象也可能发生在金属-半导体接触处。
光磁电效应 设半导体样品本身是均匀的,但放在一个磁场中。图c中磁场方向垂直纸面向外。在光照下电子和空穴都向体内扩散时,受到磁场的作用,分别朝相反两个方向偏转。因而在稳定状态下,AB之间形成一开路电路。因为它是由"光"和"磁"的存在而产生的"电",因而称为光磁电效应。
光子曳引效应 与上述几种效应的起源不同,如果入射光的光子能量不足以产生电子-空穴对,但光子可以将动量传递给样品内已有的载流子,譬如说(N型半导体),从而加快电子在光照方向的运动。电子向背光的一端积累,会产生一电场,从而减缓电子的运动。达到稳定状态时,动量的转移速率正好为电场力所平衡。在强激光照射下,可以观测到一个开路电压,称为光子曳引效应。
固体的光电效应有许多种:
光电导 固体受光照而改变其电导率,是最早发现的光电现象(W.史密斯,1873)。半导体和绝缘体都有这种效应(见半导体的光电导)。
光电子发射 固体受光照而向体外发射电子的现象。它是H.R.赫兹1887年在金属上发现的。根据光电子发射的研究,发展了有实用价值的光电管。其基本结构是:在抽空的玻璃管的一壁上蒸镀一层发射电子的材料,称为光阴极。再在它的前面安装一网状阴极。当阴极施加正电压,光束照射到光阴极时,从其中发射出来的电子就趋向阳极,形成光电流。测量光电流的大小就反映出入射光的强弱。评价光电管的品质的参量主要有两个:①引起光电子发射的入射光的最长波长,称为长波限。②每个入射光子所能引起的发射电子的数目,称为量子产额。工业生产的光电管大都用铯的化合物作光阴极。长波限在0.60~0.65微米,经过复杂的制作工艺,量子产额可略略超过10%。另有一种光阴极称为S-I光阴极,长波限可达1.1微米,但这时的量子效率已低于0.1%。正在发展中的新光阴极是在Ⅲ-Ⅴ族半导体(二元或三元)上加一薄层铯的氧化物。长波限可超过1.1微米。在1.1微米处的量子产额比S-I光阴极材料至少大十倍。
光扩散效应 半导体中有两种载流子,即带负电的电子和带正电的空穴。光束照射半导体样品的一个表面时,如果光子的能量适当,就能同时产生电子和空穴。在接近光照面处,光子激发出来的电子和空穴的浓度很大,越向体内,浓度越小。这一浓度梯度促使电子和空穴都向体内扩散。但两者的扩散速度不同,一般说来,电子扩散速度较大,因而电子先扩散到样品的背光那一面,在样品中建立起一个阻止电子扩散而加速空穴扩散的电场。达到稳定状态时,电场的大小正好使电子流密度和空穴流密度相等。这时在样品的两边之间建立起一开路电压,称为扩散电压(图a)。这个现象称为光扩散效应,也称丹倍效应。光扩散电压比较小,常常被其他更显著的效应所遮盖,不易测量。
光生伏打效应 如果半导体中有一个PN结平行于光照面。光照下,P区和N区之间会产生电动势(图b),称为光生伏打效应。同样现象也可能发生在金属-半导体接触处。
光磁电效应 设半导体样品本身是均匀的,但放在一个磁场中。图c中磁场方向垂直纸面向外。在光照下电子和空穴都向体内扩散时,受到磁场的作用,分别朝相反两个方向偏转。因而在稳定状态下,AB之间形成一开路电路。因为它是由"光"和"磁"的存在而产生的"电",因而称为光磁电效应。
光子曳引效应 与上述几种效应的起源不同,如果入射光的光子能量不足以产生电子-空穴对,但光子可以将动量传递给样品内已有的载流子,譬如说(N型半导体),从而加快电子在光照方向的运动。电子向背光的一端积累,会产生一电场,从而减缓电子的运动。达到稳定状态时,动量的转移速率正好为电场力所平衡。在强激光照射下,可以观测到一个开路电压,称为光子曳引效应。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条