1) coaxial short
同轴短路
2) coaxial stub
同轴短线
3) coaxial stub
同轴短截线
4) Quadrature-axis shor-circuit circle
交轴短路环
5) coaxial circuit
同轴电路
6) concentric-conductor line
同轴线路
补充资料:典型截线
典型截线
canonical sections
典型截线【can画因se币佣s;咧.知肥联”砚p”碑3‘11,典型割线(canoni以1 cuts) 典型截线系是亏格为g且边界具有,个分支的有限Riem叨。ee面(Riemann surface)R上29+,条曲线所组成的集合 S={a,,bt,…,a。,b,,l:,…,I,},使得当这些曲线从R上移走,即沿S中的曲线把R割开时,余下的部分是一个(平面)单连通区域R:更确切地说,如果对S内每一条闭的或者说循环截线(Cyclicsection)a,(z一1,…,g)(或简称嶂巧(卿cle)),恰有一条所谓伴呼嶂巧(a djoin‘cyde)气与a、恰交于S中所有截线的一个公共固定点p。任R,其余的循环a*,b*(k艺i)及曲线l,(s=1,·“,协只以p。为公共点,且都不从截线a,的一侧通过到其另一侧;每条曲线l,连接po和相应的边界分支,那么系统S就是一个典型截线集.在一个给定的Riemann曲面R上,存在无穷多个典型截线系.特别,对任一个连同其闭包D严格位于R内部的单连通区域DcR,可以选取典型截线系使得DcR‘. 此外,总可以找到一个完全由解析曲线组成的典型截线系5.由解析曲线所组成的系统S的唯一性,可以,例如,由某个与S有关的泛函达到极值这样的附加要求来保证.特别,可以作出系统S中的循环典型截线aj,b,使得在系统S的同伦类中Robin常数(Robinconstant)的最大值在一个指定区域D CR内一点p。达到,p。任D.曲线l、的唯一性也可由要求Robin常数在一对指定点为最大来保证(见【2]).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条