说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 地热田储量估算
1)  estimation of geothermal field's reserve
地热田储量估算
2)  reserve estimation
储量估算
1.
Through the detailed investigation and research to this solid minerals reserve estimation process, this paper researched about the calculation method of single project circled of reserve estimation process, ore body section link, and the traditional reserve estimation method, such as geological block and section calculation method.
通过对固体矿产储量估算过程的详细调研,对储量估算过程中的单工程圈定算法、矿体剖面连接以及传统的储量估算方法中的平行剖面法和地质块段法做了详细研究,并针对储量计算的可视化及交互技术进行了研究,实现了一种基于Windows操作系统、MapGIS地理信息系统平台的固体矿产储量估算原型系统,实现了对固体矿产勘查数据的有效存储、管理、可视化分析及评价。
2.
In coal resource and reserve estimation,vertical depth of weathering and oxidation zone is all determined by coal quality testing indices,but no specific rules to determine width of weathering and oxidation zone on coal floor contour map.
在煤炭资源储量估算中,煤层风氧化带垂深都是根据煤质化验指标来确定,对在煤层底板等高线上如何确定煤层风氧化带宽度没有明确的规定,为此,依据实际工作中遇到的三种地质情况:地表基本平坦;地表有倾角且倾向与煤层倾向相同;地表有倾角且倾向与煤层倾向相反,分别用制图法、计算法确定其煤层风氧化带的宽度。
3)  reserves estimation
储量估算
1.
Design of software architecture of system of reserves estimation for solid minerals exploration based on layered style;
层次风格固体矿产储量估算软件体系结构设计
2.
This paper in detail describes the mathematical theory of the Monte-Carlo method and its usage in the petroleum reserves estimation.
详细论述了蒙特卡洛法的数学原理及其在油气储量估算中的具体使用方法 ,并通过应用实例说明在油气田的不同勘探开发阶段 ,根据拥有资料的多少选用适当的数学模型 ,利用蒙特卡洛法都可以估算出一个具有一定可信度的比较合理的油气储量数值。
3.
Designed this system through research on geostatistic theory and three-dimensional geological modeling,combining the situation of our country,solved the calculation problem and simulation variogram in process of reserves estimation,building and solution of the Kriging equation,building of three-dimensional geological model and automatic plot system etc.
通过近几年来对地质统计学理论和三维地质建模技术的研究,结合我国国情设计开发出储量估算系统,解决了储量估算过程中变异函数计算及自动拟合、组建并求解克立格方程组、建立三维地质模型、自动绘制图形等问题,提出了将地质统计学储量估算方法与三维地质建模技术相结合的开发模式。
4)  estimated reserves
估算储量
5)  reserves/resources estimation
储量/资源量估算
6)  heat flux estimate
热通量估算
补充资料:地热田


地热田
geothermal field

  世界粉名地热田的地热特征┌────┬─────────┬───────────────┬──────┬──────┬─────┬────┐│热田 │地热田(国名) │热储时代与岩性 │热储温度(℃)│开采井深度 │流体含盐量│单并流公││润隆拍I │ │ │ │ m │ (g/I) │ (t/h) │├────┤ │ │ │ │ │ ││护、一监│ │ │ │ │ │ │├────┼─────────┼───────────────┼──────┼──────┼─────┼────┤│干燕 │拉德珊罗(意大利) │上侏罗纪一上三亚纪白云岩和白 │245 │1 000~2 000 │<1 .0 │23 ││气型 │ │云质灰岩 │ │ │ │ ││ ├─────────┼───────────────┼──────┼──────┼─────┼────┤│ │盖瑟斯(美国) │晚侏罗纪硬砂岩 │295 │数千 │<1 .0 │70 ││ ├─────────┼───────────────┼──────┼──────┼─────┼────┤│ │松川(日本) │中新世火山碎屑岩 │200 │1 000~1 500 │<1 .0 │50 │├────┼─────────┼───────────────┼──────┼──────┼─────┼────┤│湿 │怀拉基(新西兰) │新生代浮石角砾岩 │270 │450~900 │12 │270 ││燕. ├─────────┼───────────────┼──────┼──────┼─────┼────┤│气 │布罗德兰兹(新西兰)│新生代火山角砾岩 │280 │1 000 │ │500 ││型 ├─────────┼───────────────┼──────┼──────┼─────┼────┤│ │塞罗普里托(豆西哥)│第三纪砂岩 │>300 │1 700~2 900 │~15 │230 ││ ├─────────┼───────────────┼──────┼──────┼─────┼────┤│ │阿瓦查播(萨尔瓦多)│新生代安山岩 │230 │600~1 500 │<1 .0 │200 ││ ├─────────┼───────────────┼──────┼──────┼─────┼────┤│ │波热特(前苏联) │新生代凝灰岩一角砾岩 │200 │122 │ │ ││ ├─────────┼───────────────┼──────┼──────┼─────┼────┤│ │克拉弗拉(冰岛) │第四纪玄武岩 │200~345 │1 000~么200 │.<1 .0 │~200 ││ ├─────────┼───────────────┼──────┼──────┼─────┼────┤│ │汤加纳(菲律宾) │新第三纪安山质碎屑岩 │181~310 │600~3 000 │3~4(CI) │~100 ││ ├─────────┼───────────────┼──────┼──────┼─────┼────┤│ │大岳(日本) │中新世火山碎屑岩 │>200 │500 │ │~100 ││ ├─────────┼───────────────┼──────┼──────┼─────┼────┤│ │羊八井(中国) │第四纪一三亚纪砂岩砾岩、花岗 │172~328 │ 60~400 │2。2 │~100 ││ │ │岩 │ │1 500~2 000 │ │ │├────┼─────────┼───────────────┼──────┼──────┼─────┼────┤│热 │巴集盆地(法国) │第三纪一三处纪砂岩砾岩 │30~100 │500~2 700 │1~300 │~100 ││水 ├─────────┼───────────────┼──────┼──────┼─────┼────┤│型 │活诺宁盆地(匈牙利)│第三纪一古生代泥灰岩、灰岩 │35~100 │300~2 500 │4~5 │~100 ││ ├─────────┼───────────────┼──────┼──────┼─────┼────┤│ │华北平原〔中国) │第三纪一元古代砂砾岩、灰岩、白│30~1 18 │300~3 000 │<1 .0~8.0 │~60 ││ │ │云岩 │ │ │ │ │└────┴─────────┴───────────────┴──────┴──────┴─────┴────┘地热田(geothermal field)在当前或近期技术经济条件下有开发利用价值的地热资源富集区。按热能存在状态可分为:热水型地热田,即产出过饱和态地热水的地热田;湿燕气型地热田,通过钻孔引出的高温热水部分扩容汽化的地热田;干蒸气型地热田,产出不含液态水的干饱和蒸气。按地热田形成条件和储存空间可分为裂隙型地热田.沉积盆地型地热田和“人工地热田”。 ①裂隙型地热田:形态和规模均受控于断裂破碎带,一般延深的深度大、规模小,而温度较高(由于地下水直接通过深循环对流形成),矿化度低。中国已勘查的裂隙型地热田有32个,规模最大的相当于634万吨标准煤(见谋当圣)。 ②沉积盆地型地热田:分布在埋深较大的向斜、单斜构造发育区,或近代沉降盆地内。热储呈层状或透镜状分布,受岩性(含水层)控制。地热田的热水为承压水,规模大(分布面积几十至数百平方公里),地温梯度不高(接近正常),热源从侧面或深部经过传导补给(或加热的水渗透)。水的补给主要为大气环流水,另外也可能有古潜水(封存的地下水)。热水的矿化度较高。热水温度低而储量大,必须通过钻探方法提取。中国十大盆地深度仅ZOO0m以内地热资源可采储量达37.36xlo,?kJ,相当于1.27又10,Zt标准煤;而暂难开采(深度>2000m)的地热资源可采量为5.44只10,skJ,相当l·85X10,’t标准煤。 ③人工地热田:通过人工破碎热岩体(近代火山或岩浆侵入地区影响的高温岩层,无渗透性和地下水的补给),注入冷水后,再通过另一孔将加热的循环水提出。美国在芬顿山一个破火山口进行了人工地热田的发电试验。 地热田热储的岩性主要是角砾岩、砂岩和碳酸盐岩,世界著名地热田的地热特征见上页表。 (任湘)
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条