1) atomic disintegration
原子衰变
2) decay daughter
衰变子体
1.
Measuring principle is made clear by analyzing radon a decay daughters and describing how to distinguish these daughters.
通过分析氡的α衰变子体和说明区分这些子体的方法来阐明测量原理,详细介绍了组成该仪器的各个部件及其原理,如电源、半导体探测器、微控制器等。
3) attenuation coefficient
衰变因子
1.
A non-iterative model for collecting rate of condensed water bsaed on attenuation coefficient model was bult,and another model bsaed on diffusion layer theory was improved.
以衰变因子模型为基础建立了冷凝水收集速率的非迭代模型,完善了基于扩散层理论计算冷凝水收集速率模型。
4) electron decay
电子衰变
1.
A tiny damage of charge conservation was received in this paper from the measure experiment of electron decay and the elastic scattering of 500Mev neutron and proton, also the damage and new knowledge of the charge conservation were briefly reviewed.
本文从对电子衰变的实验测量和500Mev中子和质子弹性散射,得到了电荷守恒的微小破坏,并简要地评述了电荷守恒定律所遇到的破坏及认识。
2.
Using substructure model of lepton and quark,the neutrino oscillation,and the electron decay etc.
用轻子、夸克的亚结构模型,分析了中微子振荡、μ→e+γ、b→s+γ以及电子衰变等过程。
5) leptonic decay
轻子衰变
1.
Starting from the QCD potential which emerges from the effective dilaton gluon coupling,the energy levels and the widths of the leptonic decay and radiative transition are calculated for heavy mesons(c and b)and compared with that of the Cornell potenial.
从伸缩子 -胶子有效耦合理论得到的重夸克 -反夸克势模型出发 ,计算了重介子的自旋平均能谱及轻子衰变和辐射跃迁宽度 ,并与Cornell势模型所得到的相应结果作了比较 。
2.
The relation between the leptonic decay width of J / ψand the color screening mass at finite temperature is studied by using different quark binding potentials.
用不同形式的夸克结合势研究J/ψ的轻子衰变与色屏蔽质量的关系,用屏蔽质量与介质温度和密度的关系,得到J/ψ在热密物质中的轻子衰变宽度。
3.
The spectra,leptonic decay widths and the E1 transitions of system are calculated,with the confining potential including the color screening effect as a color confinement between quark and antiquark.
利用含色屏蔽效应的禁闭位,计算了b体系的能谱,轻子衰变宽度和E1跃迁。
6) quantum decay
量子衰变
1.
Influence of nonlinear coupling on quantum decay rate of metastable dissipative systems;
非线性耗散对亚稳态系统量子衰变速率的影响
补充资料:等离子体激元衰变中微子过程
等离子体中各种形式的波的量子叫作等离子体激元Γ(可看作准粒子)。等离子体激元衰变为一对正、反中微子的过程,称为等离子体激元衰变中微子过程。其反应为Γ→ve+尌e。式中右端的ve+尌e也可推广为vμ+尌μ,vτ+尌τ等,在真空中传播的自由光子,由于能量、动量守恒定律的限制(光子能量等于其动量和光速的乘积),不可能衰变为正、反中微子对。但是对于在等离子体中传播的光子,这种形式的等离子体激元相当于一个具有静止质量的光子,却可以衰变为正、反中微子对。这是由等离子体激元湮没为正、负电子对的电磁作用和由中介玻色子传递的弱作用二者组合起来的过程。这一过程使系统的能量被中微子带走。因为中微子与星体物质的相互作用微弱,所以它们有很强的穿透力,能够迅速逃逸。星体温度愈高,高能量的等离子体激元所占的百分比愈大,由衰变过程损耗的能量也愈大。由于等离子体激元的静止质量随着介质密度增加而增大,所以,在高密度区域内,和其他的星体辐射中微子机制比较,等离子体激元衰变中微子过程是星体中能量损耗的主要过程。中微子过程引起的星体能量损耗对星体的演化有重要作用(见中微子天文学)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条