说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 氚年代测定法
1)  tritium dating
氚年代测定法
2)  tritium dating
氚测定年龄
3)  radium dating
镭年代测定法
4)  fluorine dating
氟年代测定法
5)  geochronometry [英][,dʒi(:)əukrə'nɔmitri]  [美][,dʒiokrə'nɑmɪtri]
地质年代测定法
6)  protactinium dating
镤年代测定法
补充资料:恒星的年龄是怎样测定的?

现在观测到的恒星,它们的年龄有所不同。短的几百万年,长的可达几十亿年。那么,恒星的年龄是怎样测定的呢?方法有两种,一是球状星团法,二是放射性同位素法。

球状星团法是根据球状星团的演化特征来确定的。设想球状星团所有成员,都是同时诞生的,但它们的质量各不相同,很显然,在刚诞生时,由于各种质量的星都是处在主星序的星。经过一定的时间后,温度高的大质量星首先达到转变点,然后脱离主星序阶段,变成红巨星,从而在它们的赫罗图上就会出现一个从主星序到红巨星的转变点,转变点上的星是刚刚到达转变期的星。随着时间的流逝,转变点不断沿着主星序向下移动。所以根据恒星拐弯点的位置就可以确定出球状星团的年龄。若已知转变点的位置,就可以由赫罗图知道光度、温度。已知光度,根据质光关系可求出质量,再考虑随时间变化质量的流失率,就可求出年龄。用这种方法确定恒星的优点是,由于球状星团里有许多的恒星,可使转变点的位置非常准确地被定出来,这样也就可以确定出恒星的年龄来。缺点是由拐弯点计算恒星年龄还要知道恒星中各种元素含量的比例,由于球状星团里暗星较多,很难准确地测出恒星元素含量,这就会使年龄测定中存在误差。

用以上方法测定出一些球状星团的年龄。一些老的球状星团的年龄,都在90亿年至150亿年之间。

放射性同位素法测恒星年龄与用此法测定地球年龄一样。用放射性同位素确定太阳系的年龄的基本方法是:世界上的铀元素(化学符号U)有两种同位素U235和U238,它们的半衰周期分别为7亿年和45亿年(半衰周期是指放射性原子由于衰变而使数目减少到一半时所经过的时间)。因为U235的半衰期比U238的短,所以U235更容易衰变掉,所以现在地球上的铀矿中,主要成分是U238,而U235的含量非常少。确切地说,地球上的U238约为99.2739%,U235仅占0.7205%,这两个数值之比称为U235与U238的相对丰富度。随着时间的前进,地球上UZ35的含量就会更少些。在历史早期时,就是太阳系刚形成时,U235的含量一定比现在多。如果我们能够知道太阳系刚诞生时U235和U238二者的相对含量,再根据二者的半衰期和现在的相对含量,就可以计算出太阳系的年龄了。利用这一方法,推算出地球的年龄约为46亿年,太阳的年龄至少也有46亿年以上。与太阳质量、光谱型接近的星,可由此推出一个年龄的下限。

各种质量的恒星寿命相差很多,所以用年龄不能描述恒星是年老还是年轻,因此天文学中引入了恒星演化龄的概念。

恒星的演化龄定义为:演化龄=年龄/寿命

演化龄越接近1,恒星就越老;演化龄越小于1,恒星就越年轻。恒星的寿命与其质量有关。遗憾的是,各种质量的恒星的寿命还没有准确地确定出来。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条