3) sun-target-camera
太阳摄影机
4) Aerial Photograph
航空摄影
1.
Course program and control of variational baseline digital aerial photography based on DEM;
变基线数字航空摄影航线设计与飞行控制——基于DEM的设计方法
5) aerial photography
航空摄影
1.
The application of sensitometry in the photographic exposure, the control of image quality, the confrol of the supplementary of processing baths, as well as the control of the processing baths in the process of a aerial photography are discussed.
阐述了感光测定曝光条件确定原理和方法,讨论了感光测定在航空摄影曝光、影像质量控制、药液补充量控制、工作药液性能检测等航空摄影过程中的应用。
6) aerial photogrammetry
航空摄影
1.
The flight path design and application in aerial photogrammetry using non-metric camera;
非量测相机航空摄影航线设计及应用
2.
The national basic aerial photogrammetry data is the original,basic,and valuable results to produce Geomatics products.
国家基础航空摄影资料是生产地理信息产品最原始、最基本、最宝贵的成果。
3.
Strengthening the quality management and supervision of aerial photogrammetry is the necessary living condition of aerial photogrammetry organizations in market economy environment.
强化航空摄影质量管理和监督是市场经济条件下航空摄影生产单位生存的必要条件。
补充资料:航天摄影
在航天飞行中利用摄影机或其他遥感探测器获取地球或其他星体的图像资料和有关数据的技术。这里虽按习惯使用"摄影"一词,但已不仅指电磁辐射直接作用于底片乳剂而成像的方式,也包括获取信息的其他方式。航天摄影通常采用全景摄影,多谱段摄影,电荷耦合器件 (CCD)阵列扫描光电成像,以及雷达扫描成像等方式。航天摄影是航空摄影的扩充和发展。
航天摄影所获得的资料可用于地图测绘、气象研究、资源考察、环境监测等。
装备 航天摄影的运载工具主要有气象卫星、侦察卫星、地球资源卫星(陆地卫星)、航天飞机和宇宙飞船,以及测图卫星等。①气象卫星采用电视摄像机和红外扫描仪获取云图。②侦察卫星采用多种摄影系统获取地面的图像资料和有关数据。其影像比例尺一般较大,分解力高,图像质量好,信息内容丰富,时间性强。这种卫星除用以探测地面情报外,还可用于摄影测量、制图和其他领域。③美国地球资源卫星采用反束光导管摄像机(RBV)和多谱段扫描仪(MSS)获取地面图像资料,并用图像数字转换技术将图像信息变为无线电信号,从卫星发回地面;地面接收站接收后,再将无线电信号转换为图像或直接记录在高密度数字磁带上?F渫枷竦乃怠⑸铰觥⒅脖缓拖咦吹匚锏惹逦妆?,地貌类型区分也较明显,适用于大面积资源考察和绘制各类专题图。在陆地卫星 4号内除装有多谱段扫描仪外,还载有新的专题测图传感器(TM),具有更好的辐射准确度和更高的空间分解力。④美国"阿波罗"宇宙飞船测月摄影系统由测图摄影机、星空摄影机(拍摄星空像片,用以定向)、全景扫描仪和测高仪组成。它是更完善的航天摄影测图系统,用于对月球表面的定位和测图。⑤美国1973年发射的"天空实验室"(SKYLAB)采用的是画幅摄影机、多谱段摄影和多谱段扫描仪。这是用航天摄影方法对地球进行测图的一次重要尝试(图1)。测图卫星应按航天摄影测量的技术要求进行设计。其特点是像片比例尺适中;有航向和旁向摄影重叠;有适当的基线航高比和良好的空间交会图形;像片有较高的地面分解力等。
分类 航天摄影有很多分类方法,按感光材料的光谱效应可分为全色、彩色、多谱段、全色红外和彩色红外摄影;按摄影机主光轴的指向可分为竖直、倾斜和交向摄影等;按传感器成像结构可分为画幅、全景扫描、线扫描和阵列式扫描摄影。此外,按图像的记录形式还可分为摄影胶片、模拟磁带和高密度数字磁带摄影等。其中常用的是按传感器成像结构分类的方法。
画幅摄影是在飞行中使物方空间的光线同时透过物镜的全视场,按中心投影原理在摄影机整个焦面上瞬时成像。它的特点是已知摄影机内方位元素,构像质量好,几何关系简单,便于量测和处理。全景扫描摄影属于动态扫描摄影,它是借助于旋转棱镜或物镜自转,或回转光学棒等方式实现地面景物的全景扫描。全景摄影机的焦面快门的缝隙方向与飞行方向平行,扫描方向与飞行方向垂直。在飞行中对地面景物扫描时,使物方光线通过物镜后,再经过焦面缝隙,在与棱镜扫描同步而方向相反的连续运动的感光胶片上成像。这种全景像片在飞行方向上是中心投影,在扫描方向上是柱面投影。全景扫描摄影机原理及成像几何结构如图2a、图2b。图2b中S为物镜投影中心;f为全景摄影机主距;α 为半扫描角;β为像点偏角;S-oξη为全景像片的像坐标系;S-oxy为等效画幅像片的像坐标系。全景扫描的优点是覆盖面积大,分解力高,地面信息丰富,适于侦察和判读;缺点是有全景畸变,测量精度较低。
线扫描摄影的信息获取系统如图3。这种仪器的特点是在同一时间内能用多个波段探测目标。仪器上设有扫描反射镜,其扫描方向与飞行方向垂直,入射光经由反射镜和光学系统送到探测器件,转换成为电信号。其信息经粗加工和彩色合成后成图。
阵列扫描摄影是由电荷耦合器件以极高密度排列在一起,按线阵列(或面阵列)在光学系统的焦面上成像(图4)。这种阵列式扫描仪亦称固体扫描仪。由于电荷耦合器件的图像转移极快,所以完成每行的扫描时间极短,实际的影像位移极小,不需要进行像移补偿。阵列式扫描仪没有运动的光机部件,也不用电子束,所以可靠性和精度较好。线阵列扫描传感器将在近期发射的法国斯波特(SPOT)卫星和美国测图卫星(MAPSAT)内使用。
参数 为了进行航天摄影设计和资料处理,需要掌握的主要参数有:卫星高度、卫星轨道根数(见卫星大地测量学),运行速度和姿态角,摄影机焦距和像幅,摄影曝光间隔,摄影时间和瞬时视场角等。这些参数用于设计覆盖范围,计算图像比例尺和图像重叠度(见航空摄影),以及进行图像处理和变形改正。
航天摄影测量 利用航天摄影图像和有关数据,经过图像处理、像片量测、地形测绘、地物判读、解析计算等,以确定地面(或其他行星)点坐标和测图的工作。航天摄影测量系统一般由测量摄影机、星空摄影机、石英钟和测高仪等联合组成,以实现对星空和对地面同步摄影。航天摄影测量所用的主要资料和数据,除航天摄影所提供的外,还有星、地像片及其像点坐标量测值,地面控制点大地坐标和有关地面测量资料等。(见彩图)
航天摄影所获得的资料可用于地图测绘、气象研究、资源考察、环境监测等。
装备 航天摄影的运载工具主要有气象卫星、侦察卫星、地球资源卫星(陆地卫星)、航天飞机和宇宙飞船,以及测图卫星等。①气象卫星采用电视摄像机和红外扫描仪获取云图。②侦察卫星采用多种摄影系统获取地面的图像资料和有关数据。其影像比例尺一般较大,分解力高,图像质量好,信息内容丰富,时间性强。这种卫星除用以探测地面情报外,还可用于摄影测量、制图和其他领域。③美国地球资源卫星采用反束光导管摄像机(RBV)和多谱段扫描仪(MSS)获取地面图像资料,并用图像数字转换技术将图像信息变为无线电信号,从卫星发回地面;地面接收站接收后,再将无线电信号转换为图像或直接记录在高密度数字磁带上?F渫枷竦乃怠⑸铰觥⒅脖缓拖咦吹匚锏惹逦妆?,地貌类型区分也较明显,适用于大面积资源考察和绘制各类专题图。在陆地卫星 4号内除装有多谱段扫描仪外,还载有新的专题测图传感器(TM),具有更好的辐射准确度和更高的空间分解力。④美国"阿波罗"宇宙飞船测月摄影系统由测图摄影机、星空摄影机(拍摄星空像片,用以定向)、全景扫描仪和测高仪组成。它是更完善的航天摄影测图系统,用于对月球表面的定位和测图。⑤美国1973年发射的"天空实验室"(SKYLAB)采用的是画幅摄影机、多谱段摄影和多谱段扫描仪。这是用航天摄影方法对地球进行测图的一次重要尝试(图1)。测图卫星应按航天摄影测量的技术要求进行设计。其特点是像片比例尺适中;有航向和旁向摄影重叠;有适当的基线航高比和良好的空间交会图形;像片有较高的地面分解力等。
分类 航天摄影有很多分类方法,按感光材料的光谱效应可分为全色、彩色、多谱段、全色红外和彩色红外摄影;按摄影机主光轴的指向可分为竖直、倾斜和交向摄影等;按传感器成像结构可分为画幅、全景扫描、线扫描和阵列式扫描摄影。此外,按图像的记录形式还可分为摄影胶片、模拟磁带和高密度数字磁带摄影等。其中常用的是按传感器成像结构分类的方法。
画幅摄影是在飞行中使物方空间的光线同时透过物镜的全视场,按中心投影原理在摄影机整个焦面上瞬时成像。它的特点是已知摄影机内方位元素,构像质量好,几何关系简单,便于量测和处理。全景扫描摄影属于动态扫描摄影,它是借助于旋转棱镜或物镜自转,或回转光学棒等方式实现地面景物的全景扫描。全景摄影机的焦面快门的缝隙方向与飞行方向平行,扫描方向与飞行方向垂直。在飞行中对地面景物扫描时,使物方光线通过物镜后,再经过焦面缝隙,在与棱镜扫描同步而方向相反的连续运动的感光胶片上成像。这种全景像片在飞行方向上是中心投影,在扫描方向上是柱面投影。全景扫描摄影机原理及成像几何结构如图2a、图2b。图2b中S为物镜投影中心;f为全景摄影机主距;α 为半扫描角;β为像点偏角;S-oξη为全景像片的像坐标系;S-oxy为等效画幅像片的像坐标系。全景扫描的优点是覆盖面积大,分解力高,地面信息丰富,适于侦察和判读;缺点是有全景畸变,测量精度较低。
线扫描摄影的信息获取系统如图3。这种仪器的特点是在同一时间内能用多个波段探测目标。仪器上设有扫描反射镜,其扫描方向与飞行方向垂直,入射光经由反射镜和光学系统送到探测器件,转换成为电信号。其信息经粗加工和彩色合成后成图。
阵列扫描摄影是由电荷耦合器件以极高密度排列在一起,按线阵列(或面阵列)在光学系统的焦面上成像(图4)。这种阵列式扫描仪亦称固体扫描仪。由于电荷耦合器件的图像转移极快,所以完成每行的扫描时间极短,实际的影像位移极小,不需要进行像移补偿。阵列式扫描仪没有运动的光机部件,也不用电子束,所以可靠性和精度较好。线阵列扫描传感器将在近期发射的法国斯波特(SPOT)卫星和美国测图卫星(MAPSAT)内使用。
参数 为了进行航天摄影设计和资料处理,需要掌握的主要参数有:卫星高度、卫星轨道根数(见卫星大地测量学),运行速度和姿态角,摄影机焦距和像幅,摄影曝光间隔,摄影时间和瞬时视场角等。这些参数用于设计覆盖范围,计算图像比例尺和图像重叠度(见航空摄影),以及进行图像处理和变形改正。
航天摄影测量 利用航天摄影图像和有关数据,经过图像处理、像片量测、地形测绘、地物判读、解析计算等,以确定地面(或其他行星)点坐标和测图的工作。航天摄影测量系统一般由测量摄影机、星空摄影机、石英钟和测高仪等联合组成,以实现对星空和对地面同步摄影。航天摄影测量所用的主要资料和数据,除航天摄影所提供的外,还有星、地像片及其像点坐标量测值,地面控制点大地坐标和有关地面测量资料等。(见彩图)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条