说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 地图数学模式
1)  mathematical model of map
地图数学模式
2)  mathematics diagram
数学图式
1.
Basic tactics play an important role in mathematics concept learning,including establishing concept group,constructing mathematics diagram,adopting objective figures reasonably and expressing concepts by words,etc.
其中,基础性策略在数学概念学习中具有重要作用,包括建立概念域或概念系、构建数学图式、恰当运用直观图形、用语言表述概念等策略。
3)  mathematical cartography
数学地图学
4)  geoscience model
地学模式
1.
In the light of essential consideration on the forming and developing essence of stony desertification, aiming at its prevention, a basic geoscience model for the r.
本文在分析石漠化形成和发展实质的基础上从预防的角度提出了石漠化整治的地学基本模式,阐述了地学模式建立的基本思想、模式基本特征及内涵、模式实施的途径。
2.
The author carries out investigation and evaluation of environmental geology in this region,and discusses geoscience model,evolution tendency and control measures of formulation of flood disasters.
长江中游干流沿岸及江汉湖群、洞庭湖、鄱阳湖、巢湖地区,面积约21×104km2,是长江流域洪灾最为严重的地区,其形成与地质环境和地质作用有密切关系,但过去对这方面还缺少全面研究,开展该地区环境地质调查评价,探讨洪灾形成的地学模式、演化趋势与防治对策,避免发生区域性重大洪灾是防洪和环境灾害地质科学技术研究领域的一项重大课题。
5)  cartographic modelling theory
地图模式论
6)  mathematical models
数学模式
1.
In this paper, by discussing in detail the relation among learning time, reviewing time, learning and mastering Chinese, the author suggests two basic mathematical models, equidifferent model and equiratio model, which relate to the Chinese learning and reviewing.
本文较为详细地讨论了汉语学习、复习时间、学习量与掌握汉语的关系 ,提出了两个与汉语学习和复习有关的基本数学模式 :等差模式和等比模式 ;还研究了词汇量与学习时间的关系。
补充资料:数学与应用数学
Image:11733562816231151.jpg
数学与应用数学

业务培养目标:

本专业培养掌握数学科学的基本理论与基本方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练,能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才。

业务培养要求:

本专业学生主要学习数学和应用数学的基础理论、基本方法,受到数学模型、计算机和数学软件方面的基本训练,具有较好的科学素养,初步具备科学研究、教学、解决实际问题及开发软件等方面的基本能力。

毕业生应获得以下几方面的知识和能力:

1.具有扎实的数学基础,受到比较严格的科学思维训练,初步掌握数学科学的思想方法;

2.具有应用数学知识去解决实际问题,特别是建立数学模型的初步能力,了解某一应3. 能熟练使用计算机(包括常用语言、工具及一些数学软件),具有编写简单应用程序的能力;

4.了解国家科学技术等有关政策和法规;

5.了解数学科学的某些新发展和应用前景;

6. 有较强的语言表达能力,掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法,具有一定的科学研究和教学能力。

主干学科:数学。

主要课程:分析学、代数学、几何学、概率论、物理学、数学模型、数学实验、计算机基础、数值方法、数学史等,以及根据应用方向选择的基本课程。

主要实践性教学环节:包括计算机实习、生产实习、科研训练或毕业论文等,一般安排10~20周。

修业年限:四年。

授予学位:理学学士。

相近专业:信息与计算科学、统计学。

数学与应用数学(师范类)

业务培养目标:

本专业培养掌握数学科学的基本理论、基础知识与基本方法,能够运用数学知识和使用计算机解决若干实际数学问题,具备在高等和中等学校进行数学教学的教师、教学研究人员及其他教育工作者。

业务培养要求:

本专业学生主要学习数学和应用数学的基本理论和方法,受到严格的数学思维训练,掌握计算机的基本原理和运用手段,并通过教育理论课程和教学实践环节,形成良好的教师素养,培养从事数学教学的基本能力和数学教育研究、数学科学研究、数学实际应用等基本能力。

毕业生应获得以下几方面的知识和能力:

1. 具有扎实的数学基础,初步掌握数学科学的基本思想方法,其中包括数学建模、数学计算、解决实际问题等基本能力;

2. 有良好的使用计算机的能力,能够进行简单的程序编写,掌握数学软件和计算机多媒体技术,能够对教学软件进行简单的二次开发;

3. 具备良好的教师职业素养和从事数学教学的基本能力。熟悉教育法规,掌握并初步运用教育学、心理学基本理论以及数学教学理论;

4. 了解近代数学的发展概貌及其在社会发展中的作用,了解数学科学的若干最新发展,数学教学领域的一些最新研究成果和教学方法,了解相近专业的一般原理和知识;学习文理渗透的课程,获得广泛的人文和科学修养;

5.较强的语言表达能力和班级管理能力;

6. 掌握资料查询、文献检索及运用现代信息技术获得相关信息的基本方法,并有一定的科研能力。

主干学科:数学。

主要课程:数学分析、几何学、代数学、物理学、概率论与数理统计、微分方程、函数论、离散数学、数学史、数值方法与计算机技术、数学模型、数学实验、教育学与心理学基础、数学教学论、人文社会科学基础。

主要实践性教学环节:包括教育实习、见习、教育调查、社会调查或毕业论文等,一般安排15~20周。

修业年限:四年。

授予学位:理学学士。

相近专业:信息与计算科学、统计学。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条