1) intelligent type air circuit breaker
智能型空气断路器
2) intelligent circuit breaker
智能型断路器
1.
This thesis introduces the hardware design and the software realization for the intelligent circuit breaker on the central of microprocessor 80C196KC.
本文介绍以80C196KC单片机为核心的智能型断路器的硬件设计和软件实现。
3) type TDZ1 air circuit breaker
TDZ1型空气断路器
1.
Improvement on electric interface about type TDZ1 air circuit breaker replaced by type BVAC.N99 vacuum breaker;
BVAC.N99型真空断路器替代TDZ1型空气断路器电气接口改进方案
5) intelligent circuit breaker
智能断路器
1.
Design of the low-voltage intelligent circuit breaker based on CAN fieldbus
基于CAN总线的低压智能断路器的设计
2.
Modern intelligent circuit breaker is more and more high to reliability and accuracy,therefore sample units are certainly in the direction toward the development of high-precision.
现代智能断路器对可靠性、精确性的要求越来越高,其采样单元也必然向着高精度的方向发展。
3.
The design of intelligent circuit breaker controller is completed by using the MSP430 MCU of TI company.
智能断路器是在传统断路器中引入计算机技术、数字处理技术和通信技术而形成的新一代断路器。
6) intelligent breaker
智能断路器
1.
Fieldbus technology and its application to intelligent breaker;
现场总线技术及其在智能断路器中的应用
2.
Design and Realization of Remote Monitoring System for Intelligent Breaker Based on LabVIEW;
基于LabVIEW的智能断路器远程监控系统设计与实现
3.
Through comparing the various models of intelligent breaker of different manufactures, a conclusion that it will reach or exceed all functions that congeneric brand top grade intelligent low voltage breaker has was drawn,as long as choosing the intelligent breaker of low-middle grade and cooperating appropriate intelligent electric instrument.
介绍了智能化配电系统的结构组成,并通过对不同厂家各种型号智能断路器的分析比较,得出了只要选择中低档智能断路器并配合合适的智能电力仪表,即可达到或超过同类品牌高档智能低压断路器所具有的功能的结论。
补充资料:压缩空气断路器
利用高压空气吹动电弧并使其熄灭的断路器。其工作时,高速气流吹弧对弧柱产生强烈的散热和冷却作用,使弧柱热电离,并迅速减弱以至消失。电弧熄灭后,电弧间隙即由新鲜的压缩空气补充,介电强度迅速恢复。分类 压缩空气断路器的主要构成部分是灭弧室。按压缩空气吹弧方式,断路器灭弧室分为横吹和纵吹两种。在实际应用中,通常是两种吹弧方式同时存在,但以一种吹弧方式为主。灭弧室的几种基本形式见图。
图a是具有绝缘隔板的横吹灭弧室。气流方向与电弧轴向垂直。压缩空气气流将电弧吹入隔板,因此电弧有曲折的形状,长度增加,同时与隔板紧密接触,使去除电离过程加速。横向吹弧方式虽然熄弧效果较好,但灭弧室结构复杂,体积较大,一般只用于电压等级较低的断路器中(例如发电机保护断路器),而不适用于高电压,大容量的场合。
图b~f是几种纵吹形式。气流方向与电弧轴平行。纵吹可分为单向吹弧(b,c,d)和双向吹弧(e,f)。在单向吹弧中,两个触头可均为实心(棒),或者一个是空心而另一个是实心。在双向吹弧中,两个触头均为空心。
图b是实心触头单向纵吹的灭弧室。压缩空气沿电弧轴向高速运动而强烈吹弧,从而使电弧直径缩小、表面冷却,并从弧隙去除电离粒子。这种结构的缺点是,触头顶端附近未能受到气吹而易受电弧烧损,弧隙中易有金属蒸气而降低弧隙介质强度,电弧易重燃。
图c是具有一个空心和一个实心触头的单向纵吹灭弧室。压缩空气从弧隙带走电离粒子,经过空心静触头迅速排到大气中。气吹使电弧从静触头喷口的工作面移动到其内表面。实心触头端部采用圆锥形。
图d是自由喷射式。在开断时,实心动触头离开静触头,在灭弧室外部发生电弧。当动触头进入灭弧室体内而完全开放喷口时,压缩空气冲入大气中,使电弧受到强烈的横吹和纵吹。
图e是具有两个空心触头的双向吹弧灭弧室。压缩空气开始时对电弧径向吹弧,然后分成两个气流纵向吹弧。对于双喷口,两个弧根都在触头的内表面。双向吹弧比单向吹弧能更迅速地从弧隙去除电离粒子。但弧隙气压较低。为了提高弧隙气压,可以将其中一个空心触头做成收缩截面,成为双向非对称纵吹,如图f所示。
特点和应用 压缩空气断路器自40年代问世以来,在50、60年代迅速发展,广泛用于高压和超高压的电力系统中。其主要特点是:①动作快,开断时间短,70年代已使用一周波断路器。这在很大程度上提高了电力系统的稳定性。②具有较高的开断能力,可以满足电力系统所提出的较高额定参数和性能要求。③可以采用积木式结构,系列性强。
由于出现了结构简单、灭弧性能良好和电寿命长的六氟化硫断路器,使得压缩空气断路器的使用范围缩小。但北欧等一些高寒地区,由于SF6气体液化和开断能力降低(降低20%左右)等原因,有些国家在高压、超高压电网中还在使用压缩空气断路器。此外,大容量发电机断路器,要求开断容量大,动作迅速,现在还广泛应用压缩空气断路器。
图a是具有绝缘隔板的横吹灭弧室。气流方向与电弧轴向垂直。压缩空气气流将电弧吹入隔板,因此电弧有曲折的形状,长度增加,同时与隔板紧密接触,使去除电离过程加速。横向吹弧方式虽然熄弧效果较好,但灭弧室结构复杂,体积较大,一般只用于电压等级较低的断路器中(例如发电机保护断路器),而不适用于高电压,大容量的场合。
图b~f是几种纵吹形式。气流方向与电弧轴平行。纵吹可分为单向吹弧(b,c,d)和双向吹弧(e,f)。在单向吹弧中,两个触头可均为实心(棒),或者一个是空心而另一个是实心。在双向吹弧中,两个触头均为空心。
图b是实心触头单向纵吹的灭弧室。压缩空气沿电弧轴向高速运动而强烈吹弧,从而使电弧直径缩小、表面冷却,并从弧隙去除电离粒子。这种结构的缺点是,触头顶端附近未能受到气吹而易受电弧烧损,弧隙中易有金属蒸气而降低弧隙介质强度,电弧易重燃。
图c是具有一个空心和一个实心触头的单向纵吹灭弧室。压缩空气从弧隙带走电离粒子,经过空心静触头迅速排到大气中。气吹使电弧从静触头喷口的工作面移动到其内表面。实心触头端部采用圆锥形。
图d是自由喷射式。在开断时,实心动触头离开静触头,在灭弧室外部发生电弧。当动触头进入灭弧室体内而完全开放喷口时,压缩空气冲入大气中,使电弧受到强烈的横吹和纵吹。
图e是具有两个空心触头的双向吹弧灭弧室。压缩空气开始时对电弧径向吹弧,然后分成两个气流纵向吹弧。对于双喷口,两个弧根都在触头的内表面。双向吹弧比单向吹弧能更迅速地从弧隙去除电离粒子。但弧隙气压较低。为了提高弧隙气压,可以将其中一个空心触头做成收缩截面,成为双向非对称纵吹,如图f所示。
特点和应用 压缩空气断路器自40年代问世以来,在50、60年代迅速发展,广泛用于高压和超高压的电力系统中。其主要特点是:①动作快,开断时间短,70年代已使用一周波断路器。这在很大程度上提高了电力系统的稳定性。②具有较高的开断能力,可以满足电力系统所提出的较高额定参数和性能要求。③可以采用积木式结构,系列性强。
由于出现了结构简单、灭弧性能良好和电寿命长的六氟化硫断路器,使得压缩空气断路器的使用范围缩小。但北欧等一些高寒地区,由于SF6气体液化和开断能力降低(降低20%左右)等原因,有些国家在高压、超高压电网中还在使用压缩空气断路器。此外,大容量发电机断路器,要求开断容量大,动作迅速,现在还广泛应用压缩空气断路器。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条