1) integral number; integer,round sum,unit,whole number
整数<数>
2) integer
[英]['ɪntɪdʒə(r)] [美]['ɪntədʒɚ]
整数
1.
On the integer represented as the product of k prime numbers in arithmetic progression;
关于表整数为算术数列中k个素数的乘积
2.
This paper presents the number n of representations of the nonzero integer z∈Z-2 as the difference of two squares of integers in Z-2,and the number n of representations of the nonzero integer z∈Z-2 as(z=(x~2+2y~2)),where x,y∈x~2+2y~2.
给出了[-2]中的非零整数表示为[-2]中的两整数平方差的表示种数,还给出了[-2]中的非零整数表示为x2+2y2(其中x,y∈[-2])形式的表示种数。
3.
This paper utilizes the Reciprocal Law Two Times to prove that the rational number of a kind of form is not the integer,and proves that the number of another kind of prime is limitless.
利用二次互反定律证明了某类形式的有理数不是整数,并且证明了某类形式的素数的个数是无限的。
3) integer-to-integer
整数到整数
1.
This paper proposed an integer-to-integer shape adaptive discrete wavelet transform(ISA-DWT) coding scheme for the MRI.
本研究提出一种新的ISA-DWT(整数到整数的形状自适应离散小波变换)的核磁共振(MR)图像压缩算法,对变换后的系数采用适合于形状自适应离散小波变换的修改的SPIHT算法进行编码,并增加上下文自适应算术编码以提高其压缩性能。
4) whole number
整数;完整数
5) integer figures
整数位数
1.
In this correspondence we will design a public-key cryptosystem based on the property whether the relating numbers on the integer figures are zeros.
论文就这此问题,利用整数位数及其整数位数上的数字是否为零这一特征建立了一个公钥密码算法。
6) algebraic integer
代数整数
1.
The paper uses the tools about algebraic number theory to find a class of quartic algebraic integer ±p~(1/2)±q~(1/2),then,it is determined and proved that their minimal polynomial is [x2-(p+q)]2-4pq,and in their normal closure,there are four real inserts and no complex inserts.
用代数数论的有关工具,找到了一类Q上四次代数整数±p~(1/2)±q~(1/2),确定并证明了它们的极小多项式是[x2-(p+q)]2-4pq,其正规闭包有4个实嵌入且没有复嵌入。
2.
Smyth proposed the following problem: Let r≥0 be a given integer, one tries to find all totally positive algebraic integers a which satisfya) Tr(α) - deg(α) = r;b)α_i >0, i = 1,…,d,whereα_i are the conjugates ofα(setα_1 = a), Tr(α) = a_1 +α_2+…+α_d is the trace ofα, and d = deg(α) is the degree of its minimal polynomial.
Smyth[24]提出的如下问题,设整数r≥0,寻找满足下列条件的代数整数α:其中,α_i为α的极小多项式的共轭根(设α_1=α),Tr(α)=α_1+α_2+…+α_d,称为α的迹。
3.
Let beαalgebraic integer of degree d, not 0 or a root of unity, all of whose conjugatesα_i are confined to a set S_θ= {α_i∈C : |arg(α_i)|≤θ}, 0 <θ< (?), i = 1,2,…, d.
设α是一个次数为d的代数整数,α≠0且非单位根。
补充资料:整数分拆数
整数分拆数
denonerant
整数分拆数[山”田院份nt;口eoyMepa盯] 整数陀分成与al,…,气相等的部分的分拆种数D(n:a,,…,气),即方程 alxl+”‘+气气=砚的非负整数解数.整数分拆数的生成函数是 D(t;马,…,气卜艺D(n;aj,…,气)t” l (1一t“,)一(l一ta“)计算整数分拆数的最简单的方法是用Euler递推关系(E妞卜r代刃un℃”ce化】atioll) D(n;l,…,k)一D(”一人;l,…,k)=D(”;l,…,k一l). 从下述定理可以对某些整数分拆数得到显式公式:如果a是数a],…,气的最小公倍数,则 D(an+b;al,…,aa),b=0,…,a一l是关于n的m一1次多项式.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条