1) viscous fluid system
粘性流体系统
2) visco-elastic fluid system
粘弹性流体系统
3) viscous fluid
粘性流体
1.
The method of partial similarity of the boundary layer of viscous fluid flowing over circular cylinder;
粘性流体绕流圆管的边界层厚度的局部相似性解法
2.
According to current engineering hydrodynamics, there s positively constant head loss in Bernoulli s theorem for identical stream line in viscous fluid, which can later turn into heat and dissipate.
现行工程流体力学与水力学理论通常认为粘性流体元流伯努利方程中的水头损失项是恒正的,并且这部分损失的机械能转变为热而耗散掉了。
3.
Based on the properties of the threshold movement of bottom mud due to standing wave, a theoretical solution of bottom shear stress due to standing wave action was derived by assuming the water to be viscous fluid and the mud to be visco elastic medium.
在介绍立波作用下底泥起动特点的基础上 ,将上层水体作为粘性流体、底泥作为粘弹性体、推导了立波作用下泥床面剪应力的表达式 。
4) viscous fluids
粘性流体
1.
A novel heat exchanger used for cooling high viscous fluids,which has two spiral plate heat exchangers placed one above the other to have the thermosiphon effect that could hold the proper wall temperature,is introduced.
介绍了一种由2台螺旋板式换热器叠置在一起的新型换热器,该型换热器可形成热虹吸效应来控制壁温,防止在壁面上形成粘滞的绝热层,从而实现高粘性流体的冷却。
2.
The influence of outlet width of impeller on the performance of centrifugal pump was studied experimentally when handling different viscous fluids.
粘性流体在离心泵内流动时 ,叶轮流道内附面层变厚 ,流动排挤作用增强 。
5) viscous liquid
粘性流体
1.
The cavitation characteristics of the centrifugal oil pump for pumping viscous liquid was studied by experiment.
本文通过实验研究了离心油泵输送粘性流体时的空蚀性能和油泵的空蚀性能与输送介质粘度的关系,研究了油泵的性能参数(流量、扬程、功率和效率)随进口真空度的变化规律,并与输送清水时的空蚀性能进行了对比,研究了进口真空度对油泵水力性能的影响。
6) viscosity
[英][vis'kɔsiti] [美][vɪs'kɑsətɪ]
粘性体系
1.
The results indicate that micromixing condition becomes worse at higher viscosity and lower rotation speed of agitator and becomes better at higher rotation speed of agitator.
s的甘油-水溶液中采用碘化钾-碘酸钾平行竞争反应研究搅拌釜中粘性体系的微观混合状况,分析泛能式桨的混合能力。
2.
The effects of RSR-combinations, rotor speed, viscosity, feed time o.
鉴于定-转子反应器具有高效传质和快速微观混合性能,本文进一步对内循环型定-转子反应器在乳液制备和粘性体系下纳米碳酸钙制备进行了应用研究。
补充资料:无粘性不可压缩流体动力学
流体动力学中主要研究无粘性不可压缩流体在绕过物体时的流动和管内流动规律的一个分支,又称经典流体动力学。这一学科分支的任务是求解流场中的速度、压力分布和物体受力。它忽略了真实流体的粘性和压缩性,也不考虑表面张力,从而大大简化了复杂的流体动力学问题,故常作为近似处理许多工程问题的依据。
速度势方程 许多无粘性不可压缩流体的流动,如来流均匀或流体从静止开始的流动,均为无旋流动。无旋流动时存在速度势嗞,相应的速度势方程为:
式中为拉普拉斯算子,在直角坐标系中
。利用这一方程和给出的边界条件就可解出嗞;再由
可得到流场速度分布,u、v、w 分别为x、y、z方向的速度分量。
柯西积分 欧拉方程在重力场中无旋流动条件下的线积分。它可叙述为:同一时刻流场中任意两点上的值相等。p为压力,为密度,v为速度模,g为重力加速度,z为距参考水平面的高度。利用柯西积分可确定流场中的压力分布;由此再沿物面积分可得到流体作用于物面的合力。
流函数 不可压缩流体平面流动时存在流函数,其)定义为:。u、v为速度分量。流函数有以下性质:①等线是流线;②任意两条等线构成一个流管(见流体运动学),其值之差就是该流管中单位宽度通过的体积流量;③无旋流动时等 嗞线与等线正交。
流动网络图 流场中等 嗞线与等线组成的正交网络(见图)。由流动网络图可看出流动图案即流谱,并能估算流场中各点速度的大小和方向。对于平面流动相邻两条流线构成的小流管中单位宽度,通过的体积流量为△=1-2;等嗞线被割截的弧长Δn 就是该流管单位宽度的截面积,于是该流管各截面上的平均流速该流管中心线沿流动的方向即为速度方向。
升力 绕流物体受到的与来流方向相垂直的力。对于无粘性不可压平面无旋定常流动,流线型物体(如叶片)所受到的升力L=vΓ。这个公式称为库塔-儒科夫斯基升力定理。式中为密度;vΓ为来流速度;Γ为速度环量,它是速度v沿包围物体的封闭曲线l的线积分,即。
参考书目
V. L. Streeter, Fluid Mechanics, 5th ed.,McGraw-Hill,New York,1971.
速度势方程 许多无粘性不可压缩流体的流动,如来流均匀或流体从静止开始的流动,均为无旋流动。无旋流动时存在速度势嗞,相应的速度势方程为:
式中为拉普拉斯算子,在直角坐标系中
。利用这一方程和给出的边界条件就可解出嗞;再由
可得到流场速度分布,u、v、w 分别为x、y、z方向的速度分量。
柯西积分 欧拉方程在重力场中无旋流动条件下的线积分。它可叙述为:同一时刻流场中任意两点上的值相等。p为压力,为密度,v为速度模,g为重力加速度,z为距参考水平面的高度。利用柯西积分可确定流场中的压力分布;由此再沿物面积分可得到流体作用于物面的合力。
流函数 不可压缩流体平面流动时存在流函数,其)定义为:。u、v为速度分量。流函数有以下性质:①等线是流线;②任意两条等线构成一个流管(见流体运动学),其值之差就是该流管中单位宽度通过的体积流量;③无旋流动时等 嗞线与等线正交。
流动网络图 流场中等 嗞线与等线组成的正交网络(见图)。由流动网络图可看出流动图案即流谱,并能估算流场中各点速度的大小和方向。对于平面流动相邻两条流线构成的小流管中单位宽度,通过的体积流量为△=1-2;等嗞线被割截的弧长Δn 就是该流管单位宽度的截面积,于是该流管各截面上的平均流速该流管中心线沿流动的方向即为速度方向。
升力 绕流物体受到的与来流方向相垂直的力。对于无粘性不可压平面无旋定常流动,流线型物体(如叶片)所受到的升力L=vΓ。这个公式称为库塔-儒科夫斯基升力定理。式中为密度;vΓ为来流速度;Γ为速度环量,它是速度v沿包围物体的封闭曲线l的线积分,即。
参考书目
V. L. Streeter, Fluid Mechanics, 5th ed.,McGraw-Hill,New York,1971.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条