1) cycle in random permutation
在随机排列中的回路
2) cycle in permutation
排列中的回路
4) pseudorandom-permutation
伪随机排列
6) random close packing
随机密排列
补充资料:随机过程论中的统计问题
随机过程论中的统计问题
statistical problems in the theory of stochastic processes
究对于探讨尸。与尸。可能的奇异性也是有用的. 例4假定观测或者为x(t)二w(t),其中w(0为一Wi印er过程(Wiener process)(H。假设),或者x(r)=州t)+w(t),其中附为一非随机函数(H,假设).如果m’6L2(0,T),则测度p(,,pl是相互绝对连续的,而如果。’必L:(0,T),则它们是相互奇异的.其似然比等于 d尸了 豆可Lx)-一{一合)〔优,(!)」2己亡·!川,(!)J·(亡)}· 例5.设x(t)二6十心(t),其中口为实参数而老(0为一零均值的平稳Gauss的Map珊过程(Markov妙cess),且有已知的相关函数厂(t)二。一“,‘,,:>0.此时测度尸子是相互绝对连续的,且有似然函数 dP不 万可气“)-一。p呀冬。二(。)、冬。二(:)、冬。:i、(才)‘: 一r tZ一’一、一’2“’一‘一‘2一才一‘一’- 一冬。2一牛。2::). 2“4-一j 特别地,x(o)+x(T)+:丁Jx(:)‘。关于族p万是一充分统计最(sul五cie以statistic), 随机过程统计中的线性问题.设观测了函数 血 x(。)二艺口,伞,(:)+七(:),(*) l其中奴t)是零均值且有己知的相关函数;(t,:)的随机过程,职,是已知的非随机函数,口二(0、,…,口*)是未知参数(口,为回归系数),而参数集0是R‘的一个子集.0,的线性估计是形如见c,二(t,)或其均方极限的估计量.找寻均方意义下的最优无偏线性估计的问题归结为解与r有关的线性代数或线性积分方程.事实上,最优估计目由对任何形如七=艺bj、(tj)且艺b,伞,(t,)=0的心组成的联立方程E。(吞,劲二0所确定.在若干情形下,当T~的时,用最小二乘方法渐近获得的O的估计,并不比最优线性估计坏,但前者在计算上更简单月.不依赖于:. 例6,在例5的条件下,k二1,中;(t)‘1.这时最优无偏线性估计最(血ea犷estin迫tor)为 、=.浩了「·(。)二(·)二)·(r)“亡{,而估计量T 。‘一喜f二(:)“。 T才-·一渐近地与之有相同的方差. G皿ss过程的统计问题.设{x(t):O蕊t簇T,p‘{}对所有口‘0为Gauss过程(Gaussian process).关于Gauss过程,有如下二者择一的结果:任何两个测度尸乙尸J或者相互绝对连续或者奇异.因为Gauss分布pJ是由其均值m。(:)二E。x(t)及其相关函数,。(s,t)=E,无(s)x(t)完全确定的,从而似然比d尸J/d尸J以一种复杂的方式由m。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条