1) parity operator
宇称算符
2) fermion parity operator
费米子宇称算符
1.
By virtue of introducing fermion parity operator,the diseussion on Wigner-Jordan transformation,which is introdueed on solving Ising model of a ferromagnetic sys-tem,is well simplified.Moreover,a concise explanation about the source of Wigner-Jordantransformation is suggested.
由于引入了费米子宇称算符,简化了为解铁磁系统伊辛模型所引进的维格纳-约当变换的讨论。
3) class idempotent function
类对称算符
1.
The class idempotent function composing systems of orthogonal idempotents is one of the fundamental tools in constructing symmetry functions and it plays an important role in symmetry designs.
构成这些正交幂等系统的类对称算符,是构造对称函数的基础工具之一,其在对称设计中扮演着重要的角色。
2.
Chapter two presents the definition,theory and examples of normal symmetry decomposition and class idempotent function.
第二章主要介绍对称剖分以及类对称算符的定义、定理和举例,并给出了一种算法构造类对称算符。
4) parity
[英]['pærəti] [美]['pærətɪ]
宇称
1.
Discovery of non-conservation of parity is an important event in the development history of physics.
宇称不守恒的发现是物理学发展史上的一个重大事件。
2.
20 century began from the research of symmetry,the discovery of nonconservation of parity starts epoch of research of breaking symmetry.
20世纪开始于对称性研究,宇称不守恒开创了研究对称破缺的新纪元。
3.
In this paper, we discussed the transition selection rule of electrical dipole radiation in atom physics by the parity theory and angular momentum theory in quantum.
本文利用量子力学的宇称理论和角动量理论,对原子物理学中所熟知的电偶极辐射的跃迁选择定则进行了理论探讨。
5) symmetry transformation operator
对称变换算符
1.
Five kinds of symmetry transformation operations and corresponding symmetry transformation operators in quantum mechanics are introduced and the proof of linearity and unitary of transformation operator as well as the deduction of its formula is also given.
介绍了量子力学中的五种对称变换操作及相应的对称变换算符,并给出了变换算符线性和幺正性的证明及其表示式的推导。
6) supersymmetric annihilation operator
超对称湮没算符
补充资料:C 宇称
将所有的粒子都变成相应的反粒子的变换称为正反粒子变换或电荷共轭变换,简称C变换。如果一个粒子或多个粒子组成的系统状态经过 C变换只改变一个常数相因子,则这个相因子称为该粒子或粒子系统的C宇称。由几个分别具有C宇称的粒子或粒子系统组成的系统,其C宇称等于各组成部分的C宇称之积。C宇称只能取 +1或-1两个值。在强相互作用和电磁相互作用中,C宇称守恒,但在弱相互作用中,C宇称不守恒。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条