1) vector impedance
夭量阻抗
2) Impedance tensor
阻抗张量
1.
Impedance tensor of Network-MT and the influencing factors;
网式大地电磁阻抗张量及其影响因素分析
2.
Canonical decomposition of magnetotelluric impedance tensor and its application.;
大地电磁(MT)阻抗张量的正则分解及其应用探讨
3) impedance measurement
阻抗测量
1.
Study on wideband bioelectrical impedance measurement system;
宽频带生物阻抗测量系统的研制
2.
DFT based inner impedance measurement method of storage battery;
基于DFT的蓄电池内部阻抗测量方法
3.
A solution for impedance measurement with four-electrode is designed here according to the requirements of liquid impedance measurement.
根据液体阻抗测量需要,提出了可用于四电极的测量方案。
4) Measured impedance
测量阻抗
1.
The existence of fault resistance may add an additional reactive or capacitive component to the measured impedance seen by the protection.
通过分析发现,无论对于相间故障还是接地故障,当线路经过渡电阻故障时,距离保护测量阻抗随着过渡电阻变化的轨迹是一段圆弧,利用故障前保护测量到的电压、电流量可以估算出其圆心和半径。
2.
By analyzing current distributions, raised applicable to the fault location methods of all parallel AT traction system, and obtained the line measured impedance of these three short circuit faults.
通过对电流分布分析,提出了适合全并联AT供电牵引网的故障测距方法,并给出了3种情况下的线路测量阻抗。
5) impedance measurement
测量阻抗
1.
Based on the mechanism of the measured impedance having distinct different values in non-fault line tripping out and power swing, this paper describes the new criterion of identifying non-fault line tripping based on local impedance measurements.
基于稳定控制装置安装处的测量阻抗值在线路无故障跳闸时和潮流转移时具有明显差异的机理,形成了基于本地电气量的无故障跳闸新判据,利用HYPERSIM实时数字仿真系统和物理动模系统通过UFV-200C型稳定控制装置对该判据的正确性、可靠性和有效性进行了验证。
6) vector impedance
矢量阻抗
1.
On the basis of linear piezomagnetism equation, electromechanical transformation equation and impedance analysis method,a vector impedance model of Giant Magnetostrictive Micro-displacement Actuator(GMA) system was set up.
基于线性压磁方程、机电换能方程和阻抗分析理论,建立了超磁致伸缩执行器的矢量阻抗分析模型。
补充资料:星接阻抗和三角接阻抗的变换
星接阻抗和三角接阻抗的变换
transformation between starc-onnected and delta-connected impedances
x ing]一e乙日kongl介e sonJ一00}Iez日伙ongde匕一。一〕huon星接阻抗和三角接阻抗的变换(t ransfor-mation betweenstar一eonneeted and delta-eonneeted imPedanees)接成星形的三个阻抗和接成三角形的三个阻抗互相替代的等效变换。它们之间的关系可用一组变换公式表示。按这组公式,用星接阻抗替换三角接阻抗或者反过来,不会影响稳态下电路其他部分的正弦电压和电流,常用于对称三相电路的分析和计算。 图1为三个阻抗21、Z:、23接成星形(又称丫形)。图2为三个阻抗Z小22。、Zal接成三角形(又称△形)。它们之间的变换公式如下:人23土图1星接阻抗图2三角接阻抗(1)将星形连接变换成三角形连接212一Z:+22+2 122及3一22+za十警(1)、|冬|矛231一23+21+2321(2)将三角形连接变换成星形连接z、-二一典乒兴-) 艺‘2士乙“3十乙31…_2 oqZI,}Z。一下万~一二-二二-汁 乙‘2士乙23十乙3‘1_Z。IZoq}艺q一二二一~二,二二--,-二二-~J 乙12十乙23十艺32夕(2) 当三个星接阻抗相等,即21一Z:一23一z丫、三个三角接阻抗相等即212一223一231一Z△时,变换公式是 Z二一32丫,Z丫一Z△/3
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条