说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 同伦的
1)  homotopic
同伦的
2)  chain homotopic
链同伦的
3)  homotopy inverse
同伦逆的
4)  improved homotopy
改进的同伦
5)  homotopy group of sphere
球的同伦群
6)  homotopyassociative
同伦结合的
补充资料:球面的同伦群


球面的同伦群
spheres, homotopy groups of die

  配边.然而,这个序列的第一项的明确的计算还有内在的困难,该困难还未被克服. 111.计算的结果.具有i一陀(2的群二。(S”)同构于上表中的群: 2)具有12簇k(22的群武同构于下表中的群:上料耘栩粼赫粉 关于群兀,(夕)的计算的更进一步的结果,见〔3]在这些群中的奇准素分量的计算中已取得了特别的进展. 例如: 3)如果p是一个奇素数,则群心的p准素分量当k=21汁一l)一1,I=l,…,(夕一l)时是Z,,而对其他的ko除二。,_,(SZm)形如20(有限的)之外是有限的,这个结果称作Sen℃有限定理(Sen七6面记以溺山印代m).从属于合成积的附加结果是西田幂零定理(Nis灿血血potel】Ce小印n万n),那是对每个“‘暇,k>0是幂零的.更进一步,有〔b坛m一M00re一N已治即面成r指数定理(〔b坛泊一Moore-N己讹以foifer exponeni也co众派n),它叙述了对p)5,Abel群:2.*、+z(S,‘+‘)的夕分量有指数夕‘· 对球面的同伦群的一个很完全的讨论,特别对Adan舀一E幻B~谱序列和它的EZ项,见〔A2】.球面的同伦群【姻~,加腼喊柳,明.声of加;c中eProMo功朋,ec翔e印ynu。] 经典同伦理论中研究的一个对象.球面同伦群二,(夕)的计算在那个年代(特别是20世纪印年代)被当作拓扑学中的中心问题之一.拓扑学家希望这些群能成功地完全算出来,并且将有助于解决同伦中的其他分类间题.这些希望没有完全实现.球面的同伦群只被部分地计算出,并且随着广义上同调论(罗nerai达刃coho即10留t坛幻r油)的发展,它们的计算问题变成不再紧迫.然而,当发现了它在微分拓扑学(球面上的微分结构和多维纽结的分类)中的意想不到的用处时,已经汇集的关于这些群的所有信息都不是多余的. 1.一般理论.1)如果i<”或葱>n=1,则兀‘(S”)=0. 2)二。(5.)=Z(Brou认尼r一Hopf定理(Brou叭甩r-Ho讨山印肥m));这个同构将群兀。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条