1) program for feature-extraction
特征抽取程序
2) feature extraction
特征抽取
1.
Research about new methods of text feature extraction;
关于文本特征抽取新方法的研究
2.
New nonlinear feature extraction method for face recognition;
新的非线性鉴别特征抽取方法及人脸识别
3.
the Analysis of Feature Extraction Technology Based on VSM;
基于向量空间模型的特征抽取技术分析
3) feature selection
特征抽取
1.
Hownet-based conceptual feature selection method;
基于知网的概念特征抽取方法
2.
This paper is a comparative study of feature selection methods in text categorization.
实验结果表明 ,在英文文本分类中表现良好的特征抽取方法 (IG、MI和CHI)在不加修正的情况下并不适合中文文本分类。
3.
In this paper a feature selection method based on HowNet is put forward,which changes word sense disambiguation into calculating the frequency of the words in relevance concept field and determines the meaning of the words from the viewpoint of the whole text.
本文将语义分析引入到文本聚类的任务中,提出了一种基于知网的特征抽取方法。
4) feature extracting
特征抽取
1.
They are bivalency and image compartmentalization,feature extracting and number recognition.
以摄像机、图像采集卡和计算机为重要技术手段,综合运用图像处理与模式识别技术,给出了一个飞机号码识别系统,该系统应用于空军某飞机场的自动加油系统,重点讨论飞机机号识别的 3个关键技术;二值化与图像分割,特征抽取以及号码识别 。
2.
At the sametime,the authors give algorithms of feature extracting ,Pattern-matching and classification.
对藏文基本字符用投影法:垂直、水平、两对角线四个方向五个子特征进行研究,并给出了特征抽取、模式匹配、字符分类的算法。
5) feature extract
特征抽取
1.
This paper presents the discussion on the principle of statistical feature extraction,and a method of statistical feature extraction using artificial neural network.
应用人工神经网络讨论了统计特征抽取的原理,提出了相应的抽取方法。
2.
Repetitive phrases identification is one of key technologies in feature extract of Web text,repetitive phrases identification technology can effectively solve difficult problem of information extract.
重复短语识别是网页文本的特征抽取过程中的关键性技术之一,通过重复短语的识别能够有效地解决网页文本内容特征抽取的难题。
6) kernel feature extraction
核特征抽取
补充资料:特征抽取
对输入模式的原始测量数据(信号)所进行的一组变换,以便在比原始信号维数较低的特征空间对模式进行有效的描述或分类(见统计模式识别)。特征抽取可以用一级或多级变换实现,在多级的情况下,上一级的输出就成为下一级的输入。较低维的输出信号可以是较高维输入信号的某种线性或非线性组合,也可以仅仅是输入信号的一个子集。在后一情况下,这种变换也叫作特征选择。根据识别系统的实际要求,通过特征抽取可以从原始信号中得到为产生或表示模式所必需的关键特征,例如可从景物的原始灰度图像中抽取出目标的轮廓和形状,也可以抽取那些只对分类有效的鉴别特征。通常原始信号所组成的测量空间具有很高的维数,如摄像机获取的灰度图像,其维数可以达到256×256以上。直接用它进行分类一方面计算量很大,更重要的是不同的测量条件,如摄像机位置的微小移动、照明强弱的变化等,都可能使在测量空间中表示同一模式的向量发生极大的变化。因此在很多情况下直接在测量空间中进行分类有很大的困难。在实际问题中,原始数据经常包含一些多余的或重复的信息,为了减少整个识别系统获取测量数据的费用和相应的计算工作量以及改善识别系统的性能,也有必要通过特征抽取和选择把模式变换到较低维数的特征空间中去。可以认为特征抽取是模式识别的关键步骤。设模式在测量空间中用D维向量x表示,在特征空间中用d 维向量y表示,线性特征抽取器就是把x变换为y 的d×D阶的一个矩阵A,即y=Ax。
特征抽取和选择的主要方法有:①以K.勒维展开式为基础进行的线性变换。②给定一个变换类,在规定的准则(例如某个与错分概率上界有关的准则函数)下在变换类中选择一个最优变换A。 ③从测量得到的特征集或已经经过前级变换的特征集中在某个准则下用搜索算法、或从上到下、或从下向上算法求出一个最优的或次优的子集,以达到特征选择的目的。④非线性映射方法,例如多维定标法和参数映射法。
在实现一个具体的模式识别系统时,通过特征抽取所求得的特征向量,在极大程度上决定了识别系统的性能。因此一方面要对识别对象的各个方面进行深入的分析,尽可能从物理上确定某些对识别有效的特征;另一方面要与分类器的设计结合起来,反复进行试验,借以得到满意的结果。
特征抽取和选择的主要方法有:①以K.勒维展开式为基础进行的线性变换。②给定一个变换类,在规定的准则(例如某个与错分概率上界有关的准则函数)下在变换类中选择一个最优变换A。 ③从测量得到的特征集或已经经过前级变换的特征集中在某个准则下用搜索算法、或从上到下、或从下向上算法求出一个最优的或次优的子集,以达到特征选择的目的。④非线性映射方法,例如多维定标法和参数映射法。
在实现一个具体的模式识别系统时,通过特征抽取所求得的特征向量,在极大程度上决定了识别系统的性能。因此一方面要对识别对象的各个方面进行深入的分析,尽可能从物理上确定某些对识别有效的特征;另一方面要与分类器的设计结合起来,反复进行试验,借以得到满意的结果。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条