1) setting value
数值设定
2) setpoint value
设定点数值
4) constructor initializer
构造函数初始值设定项
5) set value
设定值
1.
This method could also be used to calculate other parameters concerned to the standard deviation of bag weight,such as the set value of filling ablity of packager,sum weight of 20.
该方法可以进一步计算与包装机准确度有关的其它参数,如包装机灌装设定值、20袋总重等。
2.
When the unit load was changing in a large scale or working abnormally,the main steam signal changed rapidly,while the pressure triggered switch\'s set value is easily changed by vibrations or high temperatures,this led to PCV valve\'s wrong operation or no reaction.
当机组大范围变负荷或异常工况时,主蒸汽压力信号往往变化很大,但压力开关的设定值很容易因为周围振动和高温环境而迁移,从而导致PCV阀误动作或拒动。
6) set point
设定值
1.
Research on contributing factors which affect the set point of coagulant dosage autocontrol system of fluctuation of transmitted light detecting;
透光率脉动混凝投药自控系统设定值影响因素研究
2.
Two kinds of main factors affecting the set point of a streaming current detector are analyzed in this paper.
系统地分析了常规条件下流动电流混凝投药自控系统设定值的两类主要影响因素 :一类是对流动电流检测值直接产生影响的因素 ,如源水水质、混凝剂条件 ,以及取样系统位置和结构上的变化 ;另一类是对混凝沉淀过程发生影响 ,从而导致流动电流设定值有所改变的因素 。
补充资料:不适定问题数值解法
如果某个数学问题的解对定解数据的扰动极敏感,即不是连续地依赖于定解数据,则称该问题是不适定的。
在较长一段时间内,不适定问题被认为没有物理背景,因而没有引起足够的重视。最近几十年来,提出了不少具有实际意义的不适定问题,其数学理论和近似数值解法的研究也得到蓬勃的发展。
典型的不适定问题有:第一类算子(积分)方程、拉普拉斯方程的初值问题、热传导方程逆时向的初值问题、波动方程的狄利克雷问题、求解微分方程系数的反问题等等。
不适定问题可以看为极度病态的问题。在n 维欧氏空间中考察线性方程Au=??,其中A是线性算子。设AA的特征值为1=λ1≥λ2≥...≥λn≥0。若A非奇异,则λn>0,方程有惟一解。但若λn很小,则此方程的条件数(1/λn)1/2很大,方程是病态的。现在在可分的希氏空间H中讨论这个方程。若λn>0,且当n→ 时,λn→0,则上述方程就是第一类算子方程。
设{ei}为AA的特征元素组成的完备基,则成立展开式,其中。此时方程的形式解为:
设,可知A-1仅定义在F上,亦即仅当??∈F时,方程才存在解u=A-1??。
如果已知定解数据??的近似值为??δ,则可能,此时A-1??δ无意义,即方程无解。即使??δ∈F,此时虽存在,但由于A-1无界,也不能通过δ=‖??-??δ‖加以估计。所以,直接求解 Auδ=??δ不能得到有任何确保精度的近似解。这就是求解不适定问题的困难所在。
为了求得具有一定精度的近似解,已经提出了许多有效的解法。20世纪60年代,苏联数学家A.H.吉洪诺夫提出的正则法是较为重要的一种。设R是D(R)→H的对称算子,D(R)在H中处处稠密,且存在常数c>0,对任意的v∈D(R),成立(Rv,v)≥с(v,v)>0(在一般情况下,要求R 非负,且除了H 的一个有限维子空间外上式成立即可)。将满足的极值点uδ作为对应于近似数据??δ的近似解。上述条件极值点uδ也是下列无约束极值问题的解,其中α(δ)是拉格朗日乘子。由变分原理即得由于AA+αR是对称正定算子,((AA+αR)v,v)≥αс(v,v),所以其逆存在,。可以证明,当δ→0时,‖u-uδ‖→0。
正则法的实质在于,对原不适定问题中的算子附加一个适当的小扰动项αR,使之正则化(稳定化),即带有扰动项的问题是适定的。在不适定问题的许多有效解法中,都以某种方式体现了这种正则化思想。
在较长一段时间内,不适定问题被认为没有物理背景,因而没有引起足够的重视。最近几十年来,提出了不少具有实际意义的不适定问题,其数学理论和近似数值解法的研究也得到蓬勃的发展。
典型的不适定问题有:第一类算子(积分)方程、拉普拉斯方程的初值问题、热传导方程逆时向的初值问题、波动方程的狄利克雷问题、求解微分方程系数的反问题等等。
不适定问题可以看为极度病态的问题。在n 维欧氏空间中考察线性方程Au=??,其中A是线性算子。设AA的特征值为1=λ1≥λ2≥...≥λn≥0。若A非奇异,则λn>0,方程有惟一解。但若λn很小,则此方程的条件数(1/λn)1/2很大,方程是病态的。现在在可分的希氏空间H中讨论这个方程。若λn>0,且当n→ 时,λn→0,则上述方程就是第一类算子方程。
设{ei}为AA的特征元素组成的完备基,则成立展开式,其中。此时方程的形式解为:
设,可知A-1仅定义在F上,亦即仅当??∈F时,方程才存在解u=A-1??。
如果已知定解数据??的近似值为??δ,则可能,此时A-1??δ无意义,即方程无解。即使??δ∈F,此时虽存在,但由于A-1无界,也不能通过δ=‖??-??δ‖加以估计。所以,直接求解 Auδ=??δ不能得到有任何确保精度的近似解。这就是求解不适定问题的困难所在。
为了求得具有一定精度的近似解,已经提出了许多有效的解法。20世纪60年代,苏联数学家A.H.吉洪诺夫提出的正则法是较为重要的一种。设R是D(R)→H的对称算子,D(R)在H中处处稠密,且存在常数c>0,对任意的v∈D(R),成立(Rv,v)≥с(v,v)>0(在一般情况下,要求R 非负,且除了H 的一个有限维子空间外上式成立即可)。将满足的极值点uδ作为对应于近似数据??δ的近似解。上述条件极值点uδ也是下列无约束极值问题的解,其中α(δ)是拉格朗日乘子。由变分原理即得由于AA+αR是对称正定算子,((AA+αR)v,v)≥αс(v,v),所以其逆存在,。可以证明,当δ→0时,‖u-uδ‖→0。
正则法的实质在于,对原不适定问题中的算子附加一个适当的小扰动项αR,使之正则化(稳定化),即带有扰动项的问题是适定的。在不适定问题的许多有效解法中,都以某种方式体现了这种正则化思想。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条