说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 受限模糊自动机
1)  restricted fuzzy automaton
受限模糊自动机
2)  fuzzy finite automata
模糊有限自动机
1.
Relatively bifuzzy topology based on fuzzy finite automata
基于模糊有限自动机的相对双模糊拓扑
2.
The concept of complete L-Fuzzy matrix is proposed,the definition of fuzzy finite automata based on lattice-ordered monoid is formulated,i.
引入了完备L-Fuzzy矩阵的概念,给出了基于格半群的模糊有限自动机的形式化定义,即完备格值有限自动机,研究了它的主要性质;给出了完备格值有限自动机的行为矩阵,从行为矩阵出发,给出了自动机状态等价和自动机等价的定义。
3.
In this paper, based on fuzzy finite automata, the algorithms ofminimal fuzzy automata are concerned.
其次,重新定义了Mealy型模糊有限自动机中状态等价的概念,这种等价状态被扩展到了依赖字符串长度而非字符串本身的一种弱等价状态,使其具有更广泛的应用性。
3)  Mealy fuzzy finite automata
Mealy型模糊有限自动机
1.
Expansion of Mealy fuzzy finite automata is defined,and properties of Mealy fuzzy finite automata are discussed.
提出了Mealy型模糊有限自动机的扩张概念并讨论了Mealy型模糊有限自动机的一些性质,进而得到了它与原Mealy型模糊有限自动机在模糊转移函数上的关系,在此基础上讨论了它的最小化算法。
4)  fuzzy finite-state automaton(FFA)
模糊有限态自动机FFA
5)  fuzzy finite state automata
模糊有限状态自动机
1.
In this paper,based on refrence,the definitios of fuzzy automata and fuzzy finite state automata are revised,their properties are studied,and closed links between the two kinds of fuzzy automata with outputs and the algebraic properties of distributive lattice which these automata takes values are studied.
在文中,对文献8中介绍的具有输出字符功能的模糊自动机和模糊有限状态自动机的定义作了修改,并对它们进行了系统的研究,揭示了此两类自动机和取分配格的代数性质的紧密联系;得到了此两类自动机在:(1)强等价;(2)等价;(3)弱等价条件下的许多重要结论。
6)  Mizumoto type of fuzzy finite automata
Mizumoto型模糊有限自动机
补充资料:模糊自动机
      状态转移函数和输出函数为模糊函数的一类自动机。自动机可抽象地用一个五元组表示,即:A=(X,S,Y,f,g),式中X、S 和Y 分别是输入集、状态集和输出集,f和g分别是状态转移函数和输出函数。在确定的自动机中,状态转移函数f和输出函数g都是确定的,可以用严格的数学函数来描述。如果把状态转移函数 f和输出函数g模糊化,或者 f和g只能用模糊函数来描述,则自动机A即为模糊自动机。
  
  模糊自动机是E.S.桑托斯在1968年提出的,在此之前美国学者L.A.扎德在1965年提出模糊集合标志着模糊数学的诞生。桑托斯把模糊自动机作为图像识别和学习系统的数学模型,探索了自动机的学习能力。1969年傅京孙等把模糊神经元概念引入自动机理论,以研究复杂大系统如生物系统、经济系统、城市系统等的行为。70年代以来,模糊自动机已在模式识别、学习系统、复杂系统的控制等方面获得广泛的应用。
  
  模糊自动机属于不确定自动机,它对每一可能的内在状态指定隶属函数。将确定自动机推广为模糊自动机是出于解决实际问题的需要,特别是对实际几何图形的模式识别和研究复杂系统的行为的需要。例如,实际生活中的几何图形(如等腰三角形)常常不能象几何学中所定义的那样严格,表现出某种程度的模糊性(如看上去是,但实际却是非严格的等腰三角形),因此必须采用模糊自动机才有可能识别模糊的几何图形。
  
  模糊自动机理论是建立在模糊数学的基础上的。模糊数学是将二值逻辑{0,1}推广为可取[0,1]闭区间任意值的无穷多个值的连续值逻辑,其运算可以完全通过隶属函数来进行。在模糊自动机中,f 和g 分别是映射
  
f:S×X×S →[0,1]

  
g:S×X×Y →[0,1]

  
  模糊自动机与模糊文法有密切关系。模糊语言的文法,是将普通文法的规则加以模糊化,而生成的话构成VT的一个模糊子集。其中VT为终极符号的集合,例如机器描述等腰三角形的文法中VT就为三角形的三条边。一个模糊文法是一个五元序组
  FG=(VT,VN,S0,P,h)式中VN是非终极符号的集合,S0是起始符号,P是规则集,h是映射f:P→[0,1]。给定一个模糊正规文法,必唯一存在一个约束模糊自动机,使模糊正规文法所生成的模糊语言在一定意义下能用模糊自动机判定。因此模糊自动机与模糊正规文法有一一对应的关系。约束模糊自动机是模糊自动机的一种,其中初始状态是S 的普通子集,输出集Y={0,1},g是从S 到Y 的一个普通映射。模糊自动机和模糊算法、模糊程序等也都有着密切的联系。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条