1) phonochemistry
[,fəunəu'kemistri]
声化学(声)
2) sonochemical
[,sɔnəu'kemikəl]
超声化学
1.
It is concluded that reaction temperature,sonochemical time and stabile agent affect the growth of nanopalladium particles.
以可溶性钯盐为钯源,利用超声化学法,在一定浓度的稳定剂存在条件下,制备形貌为颗粒的纳米钯。
2.
Anatase TiO_2 nanocrystals are prepared by wet sonochemical method.
采用湿式超声化学法制备了锐钛矿相TiO_2纳米晶,通过XRD、TEM及粒径统计分析等手段研究了不同工艺条件下产物的不同性质。
3.
Cuprous oxide single crystal has been synthesized by sonochemical method.
利用超声化学的方法制备出Cu2O微纳米粒子,通过XRD、SEM对其进行结构和性质表征,并讨论了反应机理。
3) sonochemistry
[,sɔnə'kemistri]
声化学
1.
Ultrasound and its applications(Ⅱ)——Applications of sonochemistry in daily chemical industry;
超声波技术及应用(Ⅱ)——声化学技术在日化工业中的应用
2.
Ultraviolet Spectra Study on Humic Acid Degradation Process by Sonochemistry;
腐植酸溶液声化学降解过程中的紫外光谱研究
4) sonochemistry
[,sɔnə'kemistri]
超声化学
1.
The applications of sonochemistry in synthesizing mesoporous materials become very important in recent years.
从超声化学的基本原理和特点出发 ,主要介绍了超声法在制备硅基介孔材料和非硅基介孔材料方面的应用 ,并对超声化学法在该领域的发展前景进行了展望。
2.
In this paper,we briefly summarize the basic theory of sonochemistry and the latest progress in the synthesis of metal chalcogenide semiconductor nanoparticles in aqueous solution,organic solvent and microemulsion solution by sonochemical method.
超声化学方法合成纳米材料近年来得到了飞速的发展,引起了科学界越来越多的关注。
3.
In this paper, the development history of sonochemistry was reviewed, the reaction machanism of sonochemistry was explained in brief and the new application was introduced in the catalytic field, water treatment, electronic chemistry, and nanomaterial in details.
回顾了超声化学研究发展的历史 ,简要说明了超声化学的反应机理 ,并详细介绍了超声化学在催化领域、水处理、电化学及纳米材料中的应
5) acoustic optimization
声学优化
1.
The technology in the acoustic optimization design of high speed trains is described.
阐述了控制高速列车振动、噪声的必要性,提出了控制铁路列车振动噪声的基本对策,论述了高速列车声学优化设计的技术。
6) ultrasonic chemistry
超声化学
1.
Advanced oxidation processes based on ultrasonic chemistry;
基于超声化学的废水高级氧化技术
2.
Mechanical behaviors of(Al_3Zr+ZrB_2)/A356 composites synthesized via in situ ultrasonic chemistry reactions;
超声化学原位合成(Al_3Zr+ZrB_2)/A356复合材料的力学行为
补充资料:固体声隔声
使用隔声材料或隔振装置,隔离或减弱建筑结构或管道系统噪声的措施。在固体物质中,声波传播的阻尼较小,固体声在建筑结构和管道中可传播很远。因此,必须在产生固体声的噪声源(或振源)附近采取措施,才能有效地隔离或减弱固体声。固体声噪声源有楼板的撞击声和建筑设备振动产生的声音。固体声的隔声措施分述如下。
楼板隔声 人在建筑物中活动产生的固体声,主要是由撞击楼板引起的。楼板固体声的隔声措施有:
①建立浮筑地面。在地面板与承重楼板之间配置弹性垫层材料,如矿渣棉、玻璃棉毡和锯末等材料,使振源与承重楼板隔离开,从而降低固体声。这类构造适用于一般住宅、公寓和中小学校建筑,其典型构造见图1。
②设置弹簧吊顶。在承重楼板下用金属弹簧或橡胶制品悬挂吊顶板,使地面板与吊顶板隔离,其构造见图2。这种方法造价高,施工较复杂,只适用于录音室(棚)、播音室和音乐厅等对隔声要求高的建筑。
③铺设弹性地面层。在楼板表面粘贴沥青地面或铺设各种地毯,是隔绝楼板撞击声的简便有效措施,同时也符合机械化施工的要求,是今后解决楼板撞击声的方向。尼龙和羊毛短纤维粘结地毯价格低廉,隔声效果良好,一般可降低噪声30~50分贝。
建筑设备隔声 建筑设备中的通风机、冷冻机、水泵、电梯的变速电机和直流发电机等也是建筑中的固体声源,应采取相应的隔声措施(见建筑设备隔振)。
管道隔声 设置在房间内的设备管道是传递固体声的桥梁。其隔声措施可根据管内介质的类别、温度和压力,在管道相连处局部配置橡胶或不锈钢波形软管,软管长度以10倍管径为宜,并尽可能配置在垂直和水平两个方向上,这时软管长度在两个方向上各为5倍管径。图3为单向上配置750毫米长软管与双向各配置300毫米长软管隔声效果的对比。实践表明,双向配置的比单向配置的平均隔声量可提高1~1.5分贝。为提高管道隔声的效果,除中间局部设置软管外,在管道同屋顶和墙的固定处也用软连接。图4为JZ-610冷冻机的管道吊置在楼板上时,有、无隔离措施对楼上房间内噪声级的影响。由图可见,管道与吊架间衬垫泡沫塑料和刚性连结相比较,楼上噪声级平均下降6分贝。 建筑中的给水排水管道和暖气管道在穿过墙体和楼板时,用刚性连接也会传播固体声。隔声的方法是预埋套管并在管道和套管间填入沥青、麻丝类的隔振材料。卫生设备在与地面和墙面搭接处,可用油毡或橡胶条隔离,以减弱噪声。
参考书目
中国建筑科学研究院建筑物理研究所编:《建筑围护结构隔声》,中国建筑工业出版社,北京,1980。
楼板隔声 人在建筑物中活动产生的固体声,主要是由撞击楼板引起的。楼板固体声的隔声措施有:
①建立浮筑地面。在地面板与承重楼板之间配置弹性垫层材料,如矿渣棉、玻璃棉毡和锯末等材料,使振源与承重楼板隔离开,从而降低固体声。这类构造适用于一般住宅、公寓和中小学校建筑,其典型构造见图1。
②设置弹簧吊顶。在承重楼板下用金属弹簧或橡胶制品悬挂吊顶板,使地面板与吊顶板隔离,其构造见图2。这种方法造价高,施工较复杂,只适用于录音室(棚)、播音室和音乐厅等对隔声要求高的建筑。
③铺设弹性地面层。在楼板表面粘贴沥青地面或铺设各种地毯,是隔绝楼板撞击声的简便有效措施,同时也符合机械化施工的要求,是今后解决楼板撞击声的方向。尼龙和羊毛短纤维粘结地毯价格低廉,隔声效果良好,一般可降低噪声30~50分贝。
建筑设备隔声 建筑设备中的通风机、冷冻机、水泵、电梯的变速电机和直流发电机等也是建筑中的固体声源,应采取相应的隔声措施(见建筑设备隔振)。
管道隔声 设置在房间内的设备管道是传递固体声的桥梁。其隔声措施可根据管内介质的类别、温度和压力,在管道相连处局部配置橡胶或不锈钢波形软管,软管长度以10倍管径为宜,并尽可能配置在垂直和水平两个方向上,这时软管长度在两个方向上各为5倍管径。图3为单向上配置750毫米长软管与双向各配置300毫米长软管隔声效果的对比。实践表明,双向配置的比单向配置的平均隔声量可提高1~1.5分贝。为提高管道隔声的效果,除中间局部设置软管外,在管道同屋顶和墙的固定处也用软连接。图4为JZ-610冷冻机的管道吊置在楼板上时,有、无隔离措施对楼上房间内噪声级的影响。由图可见,管道与吊架间衬垫泡沫塑料和刚性连结相比较,楼上噪声级平均下降6分贝。 建筑中的给水排水管道和暖气管道在穿过墙体和楼板时,用刚性连接也会传播固体声。隔声的方法是预埋套管并在管道和套管间填入沥青、麻丝类的隔振材料。卫生设备在与地面和墙面搭接处,可用油毡或橡胶条隔离,以减弱噪声。
参考书目
中国建筑科学研究院建筑物理研究所编:《建筑围护结构隔声》,中国建筑工业出版社,北京,1980。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条