说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 切向导数
1)  tangential derivative
切向导数
2)  pilot notched
导向切口
3)  guided cutting
导向切割
4)  contingent epiderivative
切上导数
1.
In this paper, the necessary and sufficient conditions of Geoffrion efficient solutions in vector set-valued optimization problem with vector variational inequality are obtained by using the concept of contingent epiderivative, which has been introduced by Jahn and Rauh.
利用Jahn与Rauh提出的集值映射的切上导数概念,解决了以向量变分不等式的形式给出向量集值优化问题的Geoffrion有效解的充分必要条件。
2.
In this paper, the necessary and sufficient conditions of various proper efficient solutions in vector set-valued optimization problem are obtained by using the concept of contingent epiderivative,which has been introduced by Jahn and Rauh.
利用Jahn与Rauh提出的集值映射的切上导数概念 ,给出了向量集值映射最优化问题的各种有效解的充分与必要条
3.
By using the concept of contingent epiderivative,radial contingent epiderivative,it presents the necessary and sufficient conditions for weakly efficient solution,globally efficient solution,Henig efficient solution and C-superefficient solution to the vector equilibrium problems.
利用映射的切上导数,径向切上导数给出了向量均衡问题弱有效解,整体有效解,Hen ig有效解以及C-超有效解的充分必要条件。
5)  tangent derivative
切导数
1.
The relationship between tangent derivative and generalized corvex of set_valued mapping is dealt with in this paper.
讨论了集值映射的切导数与广义凸之间的关系。
2.
The optimization problem of the set valued map with the contingent derivative and the tangent derivative of the set valued map is discussed, and the Kuhn Tucker necessary optimality condition and sufficient optimality conditions under the assumption of the cone convexity are give
研究了赋范空间中具有相依导数和切导数的集值映射的最优化问题建立了集值映射的约束资格,给出了问题(VP)具Kuhn-Tucker的充分条件和必要条件
3.
By using tangent derivative,an analogue of K-T necessary andsufficient optimality conditions is proved.
本文讨论了目标函数是集值映射的约束和无约束最优化问题,应用切导数,得到了类似的K-T必要和充分条件。
6)  tangenthypoderivative
切下导数
补充资料:法向导数


法向导数
nonnal derivative

  法向导数【川n招日山滋..e;肋pM幼曰aa“po.3“0汉“明j 定义在一流形的邻域中(或定义在一带边流形上)的函数在此流形(或在流形边界)的法线(加m以1)方向上的导数(由巧论石佬).Jl.月.K邓pa。取B撰齐民友译
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条