说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 强平衡随机过程
1)  strong stationary stochastic process
强平衡随机过程
2)  stationary random process
平衡随机过程
3)  equilibrium renewal stochastic process
平衡更新随机过程
4)  stationary stochastic processes
平稳随机过程
1.
This paper gives the research of the transformation of stationary stochastic processes passing through the sta- tionary linear dynamics system.
研究了平稳随机过程通过平稳线性动力学系统的变换,通过力学系统、电路系统几个实例的计算,揭示了确定系统输出(响应)的统计特征的一般方法,密切了平稳过程理论与实际的联系。
2.
This paper introduces the differentiation of the stochastic processes under the meaning of mean square limit, and gives the conclusion that the arbitrary rank derivatives of stationary stochastic processes (if they exist) will still be stationary.
介绍了随机过程在均方极限意义下的可微性概念,并论述了平稳随机过程的任意阶导数(如果存在的话)仍然是平稳随机过程这一结论。
5)  stationary random process
平稳随机过程
1.
The problem is that because location where vehicles are on the bridge is changeable,so even if random vibration as importation is stationary random process,dynamic response of vehicles is beyond the scope of stationary random process.
由于车辆在桥上的位置是不断变化的,因此,即使作为输入的随机激励是平稳随机过程,车桥的动力响应也超出平稳随机过程的范围,即质量在梁上不断的运动,使系统运动方程组成为一个时变系数的二阶微分方程组,一般只能采用逐步积分的数值方法,也可以用频域法,假定其频率响应函数在瞬间不随时间变化,近似的处理这种时变性问题。
2.
Methods The definition of stationary random processes and joinly stationarity and the method of mathematics induction are used.
目的为了讨论联合平稳随机过程{X(t),t∈T}和{Y(t),t∈T}的导数{X(k)(t),t∈T}与{Y(l)(t),t∈T}(0≤k,l≤n)的联合平稳性。
6)  non-stationary stochastic process
非平稳随机过程
1.
Earthquake motions are regarded as the typical non-stationary stochastic processes,and such non-stationary characteristics influence the structural response greatly.
地震动是典型的非平稳随机过程,其非平稳特性对结构响应影响极大。
补充资料:独立增量随机过程


独立增量随机过程
tochastic process with independent increments

独立增里随机过程「劝刘巨浦c拌.义冠弓初山侧吻创如t加盆,曰n臼lts;cjl抖浦.咸nP0uecc c Ite3洲cltMuM.uP-“P啊eHll,刚』 一种随机过程(s勿比邵石cp~)X(t),对任意自然数”和所有实数O蕊:,<口,簇:2<吞2簇…蕊,。<口。,增量X(乃;)一X(‘J),…,X(刀。)一X(,。)是相互独立随机变量,独立增量随机过程称为齐次的(holll。罗11印us),如果X(:+h)一X(。),0(戊,oO,当t’,t时 p{}Y(t‘)一Y(t)}>。}~0.W汹犯r过程(Wiemr Proo巴粥)和Pb远翔1过程(Po哪npr(x芜‘s)是随机连续的独立增量随机过程的例子(前者的实现以概率1连续,后者的实现是跳跃值等于l的阶梯函数).独立增量随机过程的一个重要例子是稳定过程(见稳定分布(stable面tribution)).随机连续的独立增量随机过程(以概率1)只有第一类间断点.这种过程的值的分布对任意t是无穷可分的(见无穷可分分布(inf谊此ly一山北ible dis州bution))可以用特征函数(chara叱ristic ftmct」on)方法研究独立增量随机过程.关于过程穿越边界的概率以及第一次穿越时间的概率分布等问题,可用所谓因子分解恒等式(fac-tori山tion jdenti往留)来解决.”协月片,巴爹‘人队见随饥双桂L StDchasl」e Process). 刘秀芳译陈培德校
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条