在有磁场存在时,能隙Δ是一个与位置r,磁场`bb{H}=\frac{1}{\mu_0}\nabla\timesbb{A}`和温度T有关的复函数。在BCS理论基础上,戈尔柯夫(Gorkov)用格林函数方法给出在T→Tc时的各向同性超导体的能隙方程。徐龙道、束正煌和王思慧在Δ/πkBT<1的扩散温度区域给出了完整而具体的超导态自由能表式,并用电子有效质量近似给出了各向异性超导体的完整能隙方程:
$sum_{\mu=1}^3\frac{1}{2m_\mu^\**}(-i\hbar\nabla_\mu-e^\**A_\mu)^2\Delta(bb{r})$
$ \frac{8(\pik_BT)^2N(0)}{7\zeta(3)n_s^\**(0)}(ln\frac{T}{T_c})\Delta(bb{r})$
$ sum_{n=2}^oo(-1)^n\frac{2^5n(2n-3)!!}{(2n)!!}$
$*\frac{\zeta(2n-1)N(0)}{7\zeta(3)n_s^\**(0)}\frac{1}{(\pik_BT)^{2n-4}}$
$\times(1-\frac{1}{2^{2n-1}})|\Delta(bb{r})|^{2n-2}\Delta(bb{r})=0$(1)
$j_\mu=\frac{1}{\mu_0}(\nabla\times\nabla\timesbb{A})\mu$
$=-\frac{7\zeta(3)n_s^\**(0)}{8(\pik_BT)^2}$
$*{\frac{i\hbare^\**}{2m_\mu^\**}[\Delta^\**(bb{r})\nabla_\mu\Delta(bb{r})$
$-\Delta(bb{r})\nabla_\mu\Delta^\**(bb{r})]$
$ \frac{e^{\**^2}}{m_\mu^\**}|\Delta(bb{r})|^2A\mu}$(2)
上二式是联立方程式,式中ζ(2n-1)是RiemannZeta函数,ns*(0)和e*是库珀电子对在T=0K时的数密度和电荷,jμ和mμ*是平行主轴μ的超导电流密度和库珀对有效质量,μ0,kB和$\hbar$分别是真空磁导率,玻尔兹曼常数和除以2π的普朗克常数,N(0)是T=0K时的态密度。当m1*=m2*=m3*时就过渡到各向同性超导体的能隙方程,又若第一方程式只取至n=2为止,并在πkBT中近似令T=Tc,则联立方程又过渡到T→Tc时的各向同性的戈尔柯夫能隙方程的形式。方程(1),(2)的各向异性体现在各向异性的mμ*上。