1) aerostatics
气体静力学
2) gas
气体
1.
Effect of 80 t Converter-Ladle Argon Stirring-Concasting Steelmaking Process on Gas and Inclusion Content in Steel Q235A;
80t转炉-钢包吹氩-连铸冶炼过程对Q235A钢气体夹杂含量的影响
2.
Surface Characteristics of Cemented Carbides Machined by Ultrasonic Vibration Assisted EDM in Gas Medium;
超声振动辅助气体介质电火花加工硬质合金表面裂纹特性
3.
Effects of gas trapped in nickel alloy coating on corrosion behavior of coating deposited by HVOF;
滞留气体对镍基HVOF喷涂层腐蚀行为的影响
3) gases
气体
1.
Characterization of gases and water soluble ion of PM_(2.5) during spring and summer of 2006 in Xi'an;
西安春夏季气体及PM_(2.5)中水溶性组分的污染特征
2.
The solubility of various gases such as CO2,CO,O2,H2,SO2,N2,alkanes and alkenes in different ionic liquids and the methods for measuring the solubility were reviewed,and the basic laws of the gas solubility in ionic liquids were summarized.
系统地介绍了气体如CO2、CO、O2、H2、SO2、N2以及低级烷烃和烯烃在不同离子液体中的溶解性能以及测量溶解度的方法,总结了气体在不同离子液体中溶解性能的一般规律。
3.
Meantime NH_3 gases were also sampled using passive Ogawa sampler.
结合大气 SO_2、NO_2浓度数据,对西安市春、夏季气体及 PM_(2。
4) air
气体
1.
Skills on decreasing air-producing for patients during intravenous fluids infusion;
减少静脉输液过程中产生气体的技巧
2.
This article introduces the facture methods and demonstrational methods on the experimental fix of air s working outside and expending inner energy.
介绍了"气体对外做功、内能减少"实验装置的制作方法和演示方法。
3.
Air drilling is a drilling technique that uses compressed air or mixture of air and fluid as its circulation medium or penetration power during drilling process.
运用比较成熟的喷射钻进理论和以压缩空气作为冲洗介质的双壁管空气反循环连续取样的钻进机理,让两者有机结合起来,研究一种新型的空气钻进技术——反循环强力气体喷射钻进技术,钻进厚达数十米乃至上百米地表松散的覆盖层或较软的岩层,将会大大提高钻进效率,降低钻进成本,克服用水困难。
5) NO gas
NO气体
1.
Concentration measurement of NO gas by folded BOXCARS;
CARS测量NO气体的浓度
2.
A fiber - optic sensor system for measuring NO gas;
一种检测NO气体的光纤传感系统
3.
A twin arm optical fiber bundle that can measure and examine NO gas is estibilished.
对 NO气体的特性进行了研究 ,在不同浓度下 ,得到了 NO气体对光的吸收谱和某一波长下 NO气体吸收率随气体浓度、光程的变化特性 。
6) gas-gas cooler
气体-气体冷却器
参考词条
补充资料:潮汐静力学理论
自从I.牛顿用引潮力解释潮汐运动之后,潮汐动力的基本问题已经清晰,但用牛顿的理论直接研究海洋中的潮汐问题时,遇到非常复杂的数学困难。为此,必须将海洋所占据的空间区域,理想化为它具有简单的几何形状。1740年,D.伯努利从静力学平衡的角度出发,假设地球表面都被海洋所覆盖,而且海面在任何时刻都能够保持与重力和引潮力的合力处处垂直。这种理想化了的海洋潮汐,称为平衡潮。伯努利的这种学说,称为平衡潮学说。在此学说的基础上建立起来的一种潮汐理论,为潮汐静力学理论。这是继牛顿之后第一个提出的潮汐理论。
由此理论得到,地球表面由月球引潮力所产生的太阳平衡潮的潮高为
式中γ为地球半径的平均值,θ为月球的天顶距,M 为月球的质量,E 为地球的质量,D为月-地距离,哹 为月-地平均距离,m 为长度单位"米"。由太阳引潮力所产生的太阳平衡潮的潮高,也有类似的表达式。
如果在公式中取D =哹,且当θ=0°或180°时,=0.356米,而当θ=90°或270°时,=-0.178米,这表明平衡潮面在对着月球和背着月球的地点形成高潮,而在矢径与地球和月球的中心连线垂直的地点,形成低潮。对固定地点来说,由于地球自转和月球绕地球公转,月中天时刻每天约推迟50分钟,因此潮汐在一个太阴日(平均约24时50分)内通常有两次高潮和两次低潮,而且高潮和低潮发生的时刻,平均每天都推迟50分钟。
每逢朔日或望日,月球和太阳在天球上的经度差不多相等或相差180°,此时太阴潮和太阳潮叠加的结果,使当地的潮汐涨落在每半个月当中最大,称为大潮。若月-地距离和日-地距离都取平均值,则大潮时潮差的理论值可达0.78米。每逢上弦和下弦,太阳和月球在天球上的经度大致相差90°,此时因太阴潮和太阳潮互相削弱的效果最大,就使当地的潮汐涨落在每半个月当中最小,称为小潮。如果月-地距离和日-地距离都取平均值,则小潮时潮差的理论值可低达0.29米。实际上,对太阴潮和太阳潮来说,哹/D 的极大值分别为1.071和1.017,其立方分别为1.23和1.05,故太阴平衡潮的潮差最大可达0.657米,太阳平衡潮的潮差最大可达0.258米,两者之和应为0.915米,这是平衡潮的潮差能够达到的最大值。
大洋里许多岛屿的大潮差大多接近1米。例如:中国台湾东岸的火烧岛附近的大潮差约为 1米;夏威夷群岛火奴鲁鲁一带的最大潮差约为0.9米。 这都接近于从平衡潮理论算出的数值。但在陆架海区,由于潮波能量的集中,因而潮差往往比上述数字大得多。例如:中国杭州湾的澉浦,曾测得最大潮差为8.93米;北美洲芬迪湾的潮差在世界上最大,大约比杭州湾大一倍。
为了说明潮汐的周期和振幅的变化,在前面公式中引入月球天顶距θ与月球赤纬δ、当地纬度φ和月球时角A 的关系,则前面的太阴平衡潮公式可化为
对于太阳平衡潮来说,也有类似的表达式。此公式表明,太阴平衡潮具有 3种基本周期:半日周期、全日周期和长周期。就时角A而言,对地球上任何地点来说,由于月球和太阳都约有360°的时角变化,2A在一日之间有720°的变化,故第一项为半日周期项,它的振幅与cos2δ 成正比,而月球的δ 变化范围为0°~±28.6°,故cos2δ变化于0.77~1.00之间,因此对一定地点来说,太阴(太阳)半日潮的高(低)潮的时间主要决定于时角,但月-地(日-地)距离和月球 (太阳)赤纬对潮差也有一定的影响。式中第二项的时角为全日周期项,但是对于月球来说,sin2δ大约具有周期为半个月的变化,而对于太阳则具有周期为半年的变化。在赤纬为0°时,全日周期项为零;当赤纬不为零时,除赤道外,在地球上其他各点,半日潮和全日潮同时存在,叠加的结果,就出现日潮不等的现象。随着赤纬的增大,日潮不等的现象更加显著,在赤纬达极值时最为突出。公式的第三项不包括时角,仅由赤纬决定。对于月球,其周期约为半个月;对于太阳,则为半年。这都属于潮汐变化中的长周期部分。
平衡潮学说虽能定性地说明潮汐的周期变化和不等现象,但实际的海洋潮汐是一种复杂的波动现象(潮波),属于流体动力学范畴,其运动规律不是静力学理论所能阐明的。
由此理论得到,地球表面由月球引潮力所产生的太阳平衡潮的潮高为
式中γ为地球半径的平均值,θ为月球的天顶距,M 为月球的质量,E 为地球的质量,D为月-地距离,哹 为月-地平均距离,m 为长度单位"米"。由太阳引潮力所产生的太阳平衡潮的潮高,也有类似的表达式。
如果在公式中取D =哹,且当θ=0°或180°时,=0.356米,而当θ=90°或270°时,=-0.178米,这表明平衡潮面在对着月球和背着月球的地点形成高潮,而在矢径与地球和月球的中心连线垂直的地点,形成低潮。对固定地点来说,由于地球自转和月球绕地球公转,月中天时刻每天约推迟50分钟,因此潮汐在一个太阴日(平均约24时50分)内通常有两次高潮和两次低潮,而且高潮和低潮发生的时刻,平均每天都推迟50分钟。
每逢朔日或望日,月球和太阳在天球上的经度差不多相等或相差180°,此时太阴潮和太阳潮叠加的结果,使当地的潮汐涨落在每半个月当中最大,称为大潮。若月-地距离和日-地距离都取平均值,则大潮时潮差的理论值可达0.78米。每逢上弦和下弦,太阳和月球在天球上的经度大致相差90°,此时因太阴潮和太阳潮互相削弱的效果最大,就使当地的潮汐涨落在每半个月当中最小,称为小潮。如果月-地距离和日-地距离都取平均值,则小潮时潮差的理论值可低达0.29米。实际上,对太阴潮和太阳潮来说,哹/D 的极大值分别为1.071和1.017,其立方分别为1.23和1.05,故太阴平衡潮的潮差最大可达0.657米,太阳平衡潮的潮差最大可达0.258米,两者之和应为0.915米,这是平衡潮的潮差能够达到的最大值。
大洋里许多岛屿的大潮差大多接近1米。例如:中国台湾东岸的火烧岛附近的大潮差约为 1米;夏威夷群岛火奴鲁鲁一带的最大潮差约为0.9米。 这都接近于从平衡潮理论算出的数值。但在陆架海区,由于潮波能量的集中,因而潮差往往比上述数字大得多。例如:中国杭州湾的澉浦,曾测得最大潮差为8.93米;北美洲芬迪湾的潮差在世界上最大,大约比杭州湾大一倍。
为了说明潮汐的周期和振幅的变化,在前面公式中引入月球天顶距θ与月球赤纬δ、当地纬度φ和月球时角A 的关系,则前面的太阴平衡潮公式可化为
对于太阳平衡潮来说,也有类似的表达式。此公式表明,太阴平衡潮具有 3种基本周期:半日周期、全日周期和长周期。就时角A而言,对地球上任何地点来说,由于月球和太阳都约有360°的时角变化,2A在一日之间有720°的变化,故第一项为半日周期项,它的振幅与cos2δ 成正比,而月球的δ 变化范围为0°~±28.6°,故cos2δ变化于0.77~1.00之间,因此对一定地点来说,太阴(太阳)半日潮的高(低)潮的时间主要决定于时角,但月-地(日-地)距离和月球 (太阳)赤纬对潮差也有一定的影响。式中第二项的时角为全日周期项,但是对于月球来说,sin2δ大约具有周期为半个月的变化,而对于太阳则具有周期为半年的变化。在赤纬为0°时,全日周期项为零;当赤纬不为零时,除赤道外,在地球上其他各点,半日潮和全日潮同时存在,叠加的结果,就出现日潮不等的现象。随着赤纬的增大,日潮不等的现象更加显著,在赤纬达极值时最为突出。公式的第三项不包括时角,仅由赤纬决定。对于月球,其周期约为半个月;对于太阳,则为半年。这都属于潮汐变化中的长周期部分。
平衡潮学说虽能定性地说明潮汐的周期变化和不等现象,但实际的海洋潮汐是一种复杂的波动现象(潮波),属于流体动力学范畴,其运动规律不是静力学理论所能阐明的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。