说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 配船数
1)  fitted out ships
配船数
2)  fitted out vehicles (ships)
配车(船)数
3)  complement [英]['kɔmplɪment]  [美]['kɑmplə'mɛnt]
船舶定员数配套
4)  ship assignment
配船
1.
Mathematical model of urban passenger ferry berth and ship assignment
城市越江客运轮渡泊位与配船计算方法
5)  Ship-supporting
船舶配套
1.
Realizing the Goal of Industrial Assembling by Comparative Advantages——On Speeding up the Development of Nantong Ship-supporting Industry Centralized Zone;
依托比较优势 实现产业集聚——对加快发展南通船舶配套工业集中区的思考
6)  fleet allocation
航线配船
1.
And then, based on the transportation route system, the scheme of optimized fleet allocation on Yangtze Rive for shanghai power coal is putted out.
在此基础上,对上海电煤长江运输系统航线配船进行优化,得出上海电煤长江运输系统航线配船方案。
2.
According to the demand for power coal transportation by Shanghai Power Joint-stock Company on the Yangtze River, this paper makes suggestions for optimization of the fleet allocation of power coal transportation system by using optimization model.
本文结合上海电力股份公司所属电厂的长江煤炭需求状况,运用优化模型对上海电煤长江运输系统航线配船进行优化,得出上海电煤长江运输系统航线配船方案。
补充资料:配位数
      在配位化合物(简称配合物)中直接与中心原子连接的配体的原子数目。通常,配位数可以从2到9。如在配合物[Nb(H2O)9]3+和[ReH9]2-中配位数为9;在[Mo(CN)8]4-和[TaF8]3-中为8;在[ZrF7]3-和[NbF7]2-中为7;在[Ti(H2O)6]3+、[Co(NH3)6]3+中为6;在[CdCl5]3-和Fe(CO)5中为 5;在[BeCl4]2-、[Zn(CN)4]2- 和Ni(CO)4中为4;在[HgI3]-中为3;在[Ag(NH3)2]+和[Au(CN)2]- 中为2。配位数为10或更高(11或12)的只在镧系和锕系配合物中偶尔发现,是极少见的。影响配位数的因素如下:
  
  中心原子的大小  中心原子的最高配位数决定于它在周期表中的周次。在周期表内,第1周期元素的最高配位数为2,第2周期元素的最高配位数为4,第3周期为6,以下为8、10。最高配位数是指在配合物中,中心原子周围的最高配位原子数,实际上一般可低于最高数(表1)。由表可见,在实际中第1周期元素原子的配位数为2,第2周期不超过4。除个别例外,第3、4周期不超过6,第5、6周期为8。最常见的配位数为4和6,其次为2、5、8。配位数为奇数的通常不如偶数的普遍。
  
  
  中心原子的电荷  中心原子的电荷高,配位数就大。例如,等电子系列的中心原子Ag+、Cd2+和In3+与Cl-分别生成配位数为2、4和6的[AgCl2]-、[CdCl4]2-和[InCl6]3-配离子。同一元素不同氧化态的离子常具有不同的配位数,例如,二价铂离子Pt2+的配位数为4,而4价铂离子Pt4+为6。这是因为中心离子的电荷愈高,就需要愈多的配体负电荷来中和。
  
  中心原子的成键轨道性质和电子构型  从价键理论的观点来说,中心原子成键轨道的性质决定配位数,而中心原子的电子构型对参与成键的杂化轨道的形成很重要,例如,Zn2+和Cu+离子的5个3d轨道是全满的,适合成键的是一个4s和3个4p轨道,经sp3杂化形成4个成键轨道,指向正四面体的四个角。因此,Zn2+和Cu+与CN-生成配位数为4的配离子[Zn(CN)4]2-和[Cu(CN)4]3-,并且是正四面体构型(表2)。
  
  
  配体的性质  同一氧化态的金属离子的配位数不是固定不变的,还取决于配体的性质。例如,Fe3+与Cl-生成配位数为 4的[FeCl4]-,而与F-则生成配位数为 6的[FeF6]3-。这是因为 Fe3+从每个体积较大而较易极化的Cl-接受的电荷要大于体积较小而较难极化的F-
  
  配合物的中心原子与配体间键合的性质,对决定配位数也很重要。在含F-的配合物中,中心原子与电负性很高的F-间的键合主要是离子键。如在B3+、Fe3+和Zr4+与F-的配合物中,随着中心原子半径的增加,配位数分别为4、6和7,主要受中心原子与配体的半径比的限制(表3)。很多配合物的中心原子与配体(例如CN-、NO娛、SCN-、Br-、I-、NH3和CO等)间主要形成共价键,它们的配位数决定于中心原子成键轨道的性质。
  
  
  配位场理论认为中心原子的内层轨道受周围配体的影响,也即关系到配位数。例如,Ni2+离子与H2O和NH3等具有小的相互排斥力的弱场配体,生成配位数为 6的[Ni(H2O)6]2+和[Ni(NH3)6]2+等八面体配离子;与Br-和I-等具有大的相互排斥力的弱场配体则趋向于生成配位数为4的[NiBr4]2-和[NiI4]2-等正四面体配离子;与CN-等强场配体则生成配位数为4的[Ni(CN)4]2-平面正方形配离子。
  
  

参考书目
   戴安邦主编:《配位化学》(无机化学丛书),科学出版社,北京,1987。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条