1) magnesium-silver chloride cell
镁—氯化银电池
2) magnesium-silver chloride cell
镁-氯化银电池
4) magnesium-cuprous chloride cell
镁—氯化亚铜电池
5) zinc-silver-chloride primary cell
锌-氯化银原电池
6) silver /silver Chloride (Ag / Ag CI) reference cell
银/氯化银参比电池
补充资料:镁电池
以镁为负极,某些金属或非金属氧化物为正极的原电池。现有品种中,有与普通锌锰干电池相似的随时可以放电的镁锰干电池;还有干燥状态下可长期储存,临用时加水使之活化而可随即使用的储备型电池。
结构 镁储备型电池的结构根据所需电压及电流的大小有所不同。以Mg/AgCl电池为例:低压、大电流的电池采用卷筒式结构。负极是长条镁箔,正极用同样大小的银箔,在其两面用电解法形成两层氯化银,焊上正负极引电体后,用稍大的吸水纸夹在两极中间,再盖上一层吸水纸,将这4层材料卷起来装入容器中,待临用时用清水或海水使之活化。高电压、小电流的电池采用平片层叠式结构。银电极单面涂氯化银,正负极之间用吸水纸隔开,并用铆钉使相邻电池的异极性电极串联起来,叠合成电池组。电池组的电压取决于串联只数。采用其他正极材料的镁储备电池的结构原理与 Mg/AgCl电池的基本相同。
镁二氧化锰干电池的结构与纸板式锌锰电池有相似之处,正极二氧化锰炭包的组分和配比也基本相同,负极是一镁筒。电解液一般采用加有 Li2 CrO4 缓蚀剂的Mg(ClO4)2或MgBr2溶液,正负极之间的隔离纸上涂有凝胶材料。
原理 镁储备型电池以Mg/AgCl和Mg/Cu2Cl2电池为例,其电化学反应式分别为:
Mg+2AgCl→2Ag+MgCl2
Mg+Cu2Cl2+6H2O→2Cu+MgCl2·6H2O
镁二氧化锰干电池的电化学反应式为:
Mg+2MnO2+H2O→Mg(OH)2+Mn2O3
这三种体系的电化学表示法分别为:
特性和用途 镁锰干电池的开路电压为1.60~1.80V,工作电压为1.3~1.4V,其电荷量比同体积锌锰干电池大一倍左右。它有良好的温度适应性,能在-20~60℃条件下使用,在储存期中其电荷量下降率每年仅3%左右,因此其储存寿命可长达 5年。但电池不宜长时间间歇地使用,使用开始时有电压滞后现象,使用完毕时电池体积会膨胀。
镁储备型电池的储存寿命可达10年以上;能在任何场合在临时使用时加清水或海水使之活化,活化后半小时内即可使用;工作电压十分平稳;使用寿命一般为0.5~24小时。镁电池目前主要供军事通信和气象测候仪、海难救生设备和高空雷达仪等使用。
结构 镁储备型电池的结构根据所需电压及电流的大小有所不同。以Mg/AgCl电池为例:低压、大电流的电池采用卷筒式结构。负极是长条镁箔,正极用同样大小的银箔,在其两面用电解法形成两层氯化银,焊上正负极引电体后,用稍大的吸水纸夹在两极中间,再盖上一层吸水纸,将这4层材料卷起来装入容器中,待临用时用清水或海水使之活化。高电压、小电流的电池采用平片层叠式结构。银电极单面涂氯化银,正负极之间用吸水纸隔开,并用铆钉使相邻电池的异极性电极串联起来,叠合成电池组。电池组的电压取决于串联只数。采用其他正极材料的镁储备电池的结构原理与 Mg/AgCl电池的基本相同。
镁二氧化锰干电池的结构与纸板式锌锰电池有相似之处,正极二氧化锰炭包的组分和配比也基本相同,负极是一镁筒。电解液一般采用加有 Li2 CrO4 缓蚀剂的Mg(ClO4)2或MgBr2溶液,正负极之间的隔离纸上涂有凝胶材料。
原理 镁储备型电池以Mg/AgCl和Mg/Cu2Cl2电池为例,其电化学反应式分别为:
Mg+2AgCl→2Ag+MgCl2
Mg+Cu2Cl2+6H2O→2Cu+MgCl2·6H2O
镁二氧化锰干电池的电化学反应式为:
Mg+2MnO2+H2O→Mg(OH)2+Mn2O3
这三种体系的电化学表示法分别为:
特性和用途 镁锰干电池的开路电压为1.60~1.80V,工作电压为1.3~1.4V,其电荷量比同体积锌锰干电池大一倍左右。它有良好的温度适应性,能在-20~60℃条件下使用,在储存期中其电荷量下降率每年仅3%左右,因此其储存寿命可长达 5年。但电池不宜长时间间歇地使用,使用开始时有电压滞后现象,使用完毕时电池体积会膨胀。
镁储备型电池的储存寿命可达10年以上;能在任何场合在临时使用时加清水或海水使之活化,活化后半小时内即可使用;工作电压十分平稳;使用寿命一般为0.5~24小时。镁电池目前主要供军事通信和气象测候仪、海难救生设备和高空雷达仪等使用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条