1) bearing,hydrodynamic journal
流体动压轴颈轴承
2) hydrostatic journal bearing
流体静压轴颈轴承
3) liquid hybrid bearing
流体动静压轴承
1.
This paper mainly discusses available structures of the liquid hybrid bearings and the key technologies that need to be solved for the liquid rocket engine turbopump.
针对液体火箭发动机涡轮泵特殊工作环境,讨论了流体动静压轴承可采用的结构形式和需要解决的关键技术。
4) HDB
流体动压轴承
1.
Design and Simulation of Groove Parameters of HDB for Storage Device;
外存储器中流体动压轴承槽形结构设计与仿真
5) externally pressurized gas journal bearing
静压气体轴颈轴承
1.
Through the direct resolution of the Reynolds equations and the dynamics mathematical model of spindle system for the externally pressurized gas journal bearing with orifice compensated performance,the dynamics characteristic of bearing system was analyzed,the vibration response of spindle system produced by imbalance mass was studied.
通过对小孔节流静压气体轴颈轴承的雷诺方程与描述主轴系统的动力学数学模型联立直接进行数值求解,分析了轴承系统的动力学特性,研究了在不平衡质量作用下轴承主轴系统的响应。
2.
Through the analysis of lubricating equation of externally pressurized gas journal bearing with orifice compensated,the two step partially differential equation was lowered to single step with optimization of variation functional.
通过对小孔节流静压气体轴颈轴承润滑方程的分析,利用泛函求极值法将二阶偏微分方程降为一阶,采用有限元方法,利用三角单元线性插值函数,简化压力分布方程式的计算,对轴承的参数进行了优化,得到了轴承上各点的压力分布和轴承的承载能力和支承刚度,并分析了轴承间隙和偏心率等因素对承载能力和刚度的影响。
6) externally pressurized gas journal thrust bearings
气体静压轴颈-止推轴承
补充资料:机械零件:液体动压轴承
液体动压轴承
靠液体润滑剂动压力形成的液膜隔开两摩擦表面并承受载荷的滑动轴承。液体润滑剂是被两摩擦面的相对运动带入两摩擦面之间的。產生液体动压力的条件是﹕两摩擦面有足够的相对运动速度﹔润滑剂有适当的黏度﹔两表面间的间隙是收敛的(这一间隙实际很小﹐在图1 油楔承载 中是夸大画的)﹐在相对运动中润滑剂从间隙的大口流向小口﹐构成油楔。这种支承载荷的现象通常称为油楔承载(见润滑)。
机械加工后的两摩擦表面微观是凹凸不平的﹐如图1 油楔承载 中局部放大图。在正常运输的液体动压轴承中﹐油膜最薄(即通称最小油膜厚度)处两表面的微观凸峰不接触﹐因而两表面没有磨损。这时的摩擦完全属於油的内摩擦﹐摩擦係数可小至0.001。油的黏度越低﹐摩擦係数越小﹐但最小油膜厚度也越薄。因此﹐油的最低黏度受到最小油膜厚度的限制。当最小油膜厚度处两表面的微观凸峰接触时﹐油膜破裂﹐摩擦和磨损都增大。摩擦功使油发热而降低油的黏度。为使油的黏度比较稳定﹐一般採用有冷却装置的循环供油系统或在油中加入能降低油对温度敏感的添加剂(见润滑剂)。液体动压轴承在啟动和停车过程中﹐因速度低不能形成足够隔开两摩擦表面的油膜﹐容易出现磨损﹐所以製造轴瓦或轴承衬须选用能在直接接触条件下工作的滑动轴承材料。液体动压轴承要求轴颈和轴瓦表面几何形状正确而且光滑﹐安装时精确对中。
液体动压轴承分液体动压径向轴承和液体动压推力轴承。液体动压径向轴承又分单油楔和多油楔两类(见表 液体动压径向轴承类型 )。
单油楔液体动压径向轴承 轴颈周围只有一个承载油楔的轴承。图2 单油楔轴承的几何参数 中是剖分式的单油楔轴承。O 为轴承几何中心﹐O 为承受载荷F 后的轴颈中心。这两中心的连线称为连心线。连心线与载荷作用线所夹锐角称为偏位角。受载瓦面包围轴颈的角度称为轴承包角。O 与O 之间的距离称为偏心距。轴承孔半径R 与轴颈半径之差称为半径间隙。与之比称为相对间隙。与之比称为偏心率。最小油膜厚度=-=(1-)﹐所在方位由确定。轴承宽度B (轴向尺寸)与轴承直径之比称为宽径比。
靠液体润滑剂动压力形成的液膜隔开两摩擦表面并承受载荷的滑动轴承。液体润滑剂是被两摩擦面的相对运动带入两摩擦面之间的。產生液体动压力的条件是﹕两摩擦面有足够的相对运动速度﹔润滑剂有适当的黏度﹔两表面间的间隙是收敛的(这一间隙实际很小﹐在图1 油楔承载 中是夸大画的)﹐在相对运动中润滑剂从间隙的大口流向小口﹐构成油楔。这种支承载荷的现象通常称为油楔承载(见润滑)。
机械加工后的两摩擦表面微观是凹凸不平的﹐如图1 油楔承载 中局部放大图。在正常运输的液体动压轴承中﹐油膜最薄(即通称最小油膜厚度)处两表面的微观凸峰不接触﹐因而两表面没有磨损。这时的摩擦完全属於油的内摩擦﹐摩擦係数可小至0.001。油的黏度越低﹐摩擦係数越小﹐但最小油膜厚度也越薄。因此﹐油的最低黏度受到最小油膜厚度的限制。当最小油膜厚度处两表面的微观凸峰接触时﹐油膜破裂﹐摩擦和磨损都增大。摩擦功使油发热而降低油的黏度。为使油的黏度比较稳定﹐一般採用有冷却装置的循环供油系统或在油中加入能降低油对温度敏感的添加剂(见润滑剂)。液体动压轴承在啟动和停车过程中﹐因速度低不能形成足够隔开两摩擦表面的油膜﹐容易出现磨损﹐所以製造轴瓦或轴承衬须选用能在直接接触条件下工作的滑动轴承材料。液体动压轴承要求轴颈和轴瓦表面几何形状正确而且光滑﹐安装时精确对中。
液体动压轴承分液体动压径向轴承和液体动压推力轴承。液体动压径向轴承又分单油楔和多油楔两类(见表 液体动压径向轴承类型 )。
单油楔液体动压径向轴承 轴颈周围只有一个承载油楔的轴承。图2 单油楔轴承的几何参数 中是剖分式的单油楔轴承。O 为轴承几何中心﹐O 为承受载荷F 后的轴颈中心。这两中心的连线称为连心线。连心线与载荷作用线所夹锐角称为偏位角。受载瓦面包围轴颈的角度称为轴承包角。O 与O 之间的距离称为偏心距。轴承孔半径R 与轴颈半径之差称为半径间隙。与之比称为相对间隙。与之比称为偏心率。最小油膜厚度=-=(1-)﹐所在方位由确定。轴承宽度B (轴向尺寸)与轴承直径之比称为宽径比。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条