1) homoepitaxy
[,həumi'epitæksi]
均相外延
2) liquid phase epitaxy
液相外延
1.
Fabrication of β-BBO thin films by liquid phase epitaxy technique;
液相外延法制备β-BBO薄膜
2.
Progress in Research on Liquid Phase Epitaxy;
液相外延技术的研究进展
3.
In this paper,the application of liquid phase epitaxy(LPE) technology in the preparation of such materials as silicon,HgCdTe,single-crystal garnet film,III-V semiconductor material,et.
本文介绍了液相外延技术在制备硅材料、碲镉汞材料、石榴石型单晶材料、III-V族半导体材料和其他一些无机材料方面的应用,简述了液相外延技术近十多年来在系统改善、工艺改进和相关理论研究方面的成果,并指出了液相外延技术相对于其他外延技术的优势及其发展需要克服的困难。
3) solid phase epitaxy
固相外延
1.
Preparation of Si_(1-x-y)Ge_xC_y semiconductor films on Si by ion implantation and solid phase epitaxy;
离子注入和固相外延制备Si_(1-x-y)Ge_xC_y半导体薄膜
2.
Then the two kinds of samples were implanted with 12C+ ions simultaneously, and Si 1-xC x alloys were grown by solid phase epitaxy with high-temperature annealing.
室温下在单晶Si中注入 (0 6— 1 5 )at%的C原子 ,部分样品在C离子注入之前在其中注入2 9Si+ 离子产生损伤 ,然后在相同条件下利用高温退火固相外延了Si1 -xCx 合金 ,研究了预注入对Si1 -xCx 合金形成的影响 。
3.
Carbon ions with concentration of (0 6—1 5)% were implanted into silicon crystals at room temperature and Si 1-x C x alloys were grown by solid phase epitaxy with high temperature annealing.
室温下在单晶Si中注入 (0 6— 1 5 ) %的C原子 ,利用高温退火固相外延了Si1-xCx 合金 ,研究了不同注入剂量下Si1-xCx 合金的形成及其特征 。
4) LPE
液相外延
1.
LPE Growth of CdZnTe Buffer Layers on CdZnTe Substrates;
碲锌镉缓冲层液相外延技术的研究
2.
LPE Growth and Characterization of HgCdTe on Si Based Substrate;
Si/CdTe复合衬底HgCdTe液相外延材料的生长与性能分析
3.
The Study of Hg_(1-x)Cd_xTe LPE on Silicon Composite Substrates;
Si基复合衬底碲镉汞液相外延技术的研究
5) SPER
固相外延
1.
Preparation of Si_(1-x-y)Ge_xC_y Alloy Layers by SPER\+*;
用固相外延方法制备Si_(1-x-y)Ge_xC_y三元材料
2.
The strain- compensation characteristics of Si1 - x - y Gex Cy ternary alloys m ade by Solid Phase Epitaxial Recrystal- lization ( SPER) are studied.
研究了 Si1 - x- y Gex Cy 三元系材料的应变补偿特性 ,分析了固相外延方法制备的样品中注入离子的分布对应变补偿效果的影响 ,指出由于 Ge和 C的投影射程及标准偏差不同 ,二者在各处的组分比并不恒定 ,存在着纵向分布 ,因此各处的应变补偿情况也不尽相同 。
补充资料:金属有机化学气相外延
金属有机化学气相外延
metal-organic chemical vapour phase epitaxy
J Jnshu youjr huoxueq一x旧ng wolyan金属有机化学气相外延(metal一organicchemieal vapour epitaxy,M()VpE)娜种半导体薄膜材料制备的方法,也用于制备金属或化合物薄膜。它的原理是以金属有机化合物和烷类化合物的热解和化合等化学反应为基础的。以生长GaAs薄膜为例,其反应为: CH3Ga(v)+AsH3(v)一GaAs(s)+3CH4(g) 但其机理包括化学动力学和流体力学等则较复杂。因为MOVPE的生长条件,例如生长温度、MO源的分压、Ga/AS比以及气体流速等都能影响外延层的性能。 MOVPE与分子束外延(MBE)一样已成为生长化合物半导体薄膜的重要方法。其原因是:(l)在MOCVD过程中只要置换或增加有机源和烷类,就可以在单温区的炉中生长各种组元和组分的异质和同质化合物薄膜,例如GaAs,GaAIAs、GalnAssb;HgedTe等薄膜;(2)MOVPE可以获得超高纯和超薄层的薄膜。最近MOCVD GaAs的脚8K和室温浓度分别已达33500oem2/(V·s)和1·6只10‘3/em‘,并已制得界面宽度为0.15nm半导体超晶格和量子阱结构薄膜;(3)MOCVD可以生长含铝和含磷的多元化合物薄膜,这些难以用气相外延(VPE)和MBE方法制得;(4)MOvPE可以大规模生长低价格的新型薄膜。用市售MOVPE设备在一炉内已生长出20片50mm的GaAs圆片,厚度不均匀性簇8%。 从60年代末以来,MOVPE主要集中在化合物半导体薄膜生长方面。80年代开始,它为“能带工程”研制了许多新型薄膜结构材料,其中主要有应变层超晶格、多量子阱、调制掺杂、原子层和原子掺杂以及硅衬底上生长l一v或卜班族化合物的异质薄膜等。最近也报道了MOvPE生长四元高温超导薄膜的良好结果。利用这些材料已制成叠层和双结串联太阳电池、应变层多量子阱激光器、高速电子迁移率晶体管、异质结双极晶体管、超晶格长波长红外探测器、光电集成电路等。 为了适应新型器件和集成电路的发展,研制新的金属有机源或前置体源,以降低毒性或扩大MOVPE薄膜的品种,开展低压、激光和等离子MOVPE薄膜生长,以控制精确图形和突变界面;进行原子层和原子掺杂外延,以获得高质量的超晶格和量子阱器件等已成为目前MOVPE薄膜生长的方向。 (彭瑞伍)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条