1) turndown ratio
极限负荷比<塔的>
2) limit load
极限负荷
1.
This paper suggests a design way which uses hydraulic continuously variable transmission, thecontrol of constant power and adaptive speed, static matching parameter of driving performance at dynamic conditions and the control of limit load before travel mechanism slipping.
提出了一种利用液压无级变速传动,进行恒功率速度自适应控制,动态工况下的牵引性能参数按照静态匹配理论计算,但在行走机构全打滑前进行极限负荷控制的设计方法。
3) stalling pressure rise capability
级极限负荷
1.
Firstly,the stalling pressure rise capability of axialflow compressor stages is predicted,and the stage in which stall occurs first could be located theoretically and be verified experimentally.
首先,预测多级轴流压气机各级的级极限负荷,依此确定旋转失速发生时率先失速的级并得到实验证实;其次,将率先失速级作为待处理的级,并在一亚音速双级轴流压气机实验台上针对四种不同型式的机匣处理,进行了较为系统的实验验证。
4) overload limit
过负荷极限
5) load limitation
负荷限制,负荷极限范围
6) load limit
负荷限度[极限]
补充资料:极限拉延比
极限拉延比
limit drawing ratio
}Jxion layanb}极限拉延比(l皿‘t“raw‘ng rat‘o)_理二咨拉延成形为圆筒形制件的最大圆板料直径与凸模直惶之比,符号为LDR。极限拉延比表示板料拉延成形时极限变形程度的大小,是评定板料成形性能的指标,也是进行板料拉延成形工艺及模具设计的依据。极限拉延比值愈大,板料拉延成形时的极限变形程度愈大,板料拉延成形性能愈好。影响极限拉延比的因素包括材料的力学性能、模具几何参数、摩擦与润滑状况、压边力、成形速度、坯料表面状态和相对厚度(材料实际厚度与坯料直径之比)等。选用优质板料、增大板料相对厚度、进行良好润滑、合理调整压边力或已有的拉延筋等都能增大极限拉延比值。 板料的极限拉延比可由史维夫特(H.W.Swift)冲杯试验(见冲杯试验)确定,这一试验方法有国际标准。实用中也采用恩格哈特(Engelhardt)试验法(最大载荷法;见冲杯试脸),该方法较史维夫特冲杯试验简便,采用比标准实验坯料直径小的单一直径坯料,当坯料被拉延成形至最大载荷后,增加压边力以阻止突缘坯料拉入凹模腔内,增大拉延成形载荷直至发生断裂。极限拉延比由下式确定: LDR一一人二x “““一凸模直径八 厂鱼翌璧直迷叫述些且直鱼二塑摸直宣丝.。。.古。] L~5~“厦巍橇巍月~~+凹模直径」 圆筒形或与圆筒形相近的拉延成形制件,可直接采用由试验确定的极限拉延比值作为工艺和模具设计的依据;对其他形状的拉延成形制件,则须对极限拉延比值作必要的修正,修正量的大小取决于拉延制件的具体形状和使用要求。 (邓涉)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条