说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 费米年龄扩散方程(连续慢化年龄扩散方程)
1)  Fermi age-diffusion equation
费米年龄扩散方程(连续慢化年龄扩散方程)
2)  Fermi age-diffuson equation
费米年龄扩散方程
3)  age-diffusion equation
年龄扩散方程
4)  Fermi age-diffusion equation
费密年龄扩散方程
5)  continuous slowing-down treatment
连续慢化处理(费米年龄近似方法)
6)  fermi age equation
费米年龄方程
补充资料:对流扩散方程
      表征流动系统质量传递规律的基本方程,求解此方程可得出浓度分布。此方程系通过对系统中某空间微元体进行物料衡算而得。对于双组分系统,A组分流入某微元体的量,加上在此微元体内因化学反应生成的量,减去其流出量,即为此微元体中组分A的积累量。考虑到组分A进入和离开微元体均由扩散和对流两种作用造成,而扩散通量是用斐克定律(见分子扩散)表述的,于是可得如下的对流扩散方程:
  
    式中DAB为组分A在组分B中的分子扩散系数;rA为单位时间单位体积空间内因化学反应生成组分A的量;CA为组分A的质量浓度;τ为时间;ux、uy和uz分别为流速u的三个分量。对于仅有x方向的定态流动,且无化学反应生成组分A时,则对流扩散方程可简化成为:
  
  
    将浓度边界层概念运用于传质过程,可将二维对流扩散方程简化,得到传质边界层方程:
  
    上述方程表明,传质与流动密切相关;只有解得速度分布之后,才能从对流扩散方程解得浓度分布,进而求得传质通量。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条