1) lift-drag ratio
飞机升阻比
2) lift-drag ratio
升阻比
1.
The results show that the best effect of glide extended-rang is obtained with the adoption of maximum lift-drag ratio slide.
由数值分析得到采用最大升阻比的滑翔策略可获得最佳滑翔增程效果。
2.
The lift coefficient,drag coefficient and lift-drag ratio were obtained at a series of angles of attack, starting at 0°up to 16°at 2° intervals respectively.
利用XFO IL和FLUENT软件对NACA4412翼型(原型)及其多种改型的空气动力性能进行了数值模拟,分别对比计算了翼型在攻角为0°、2°、4°、6°、8°、10°、12°、14°和16°情况下的升力系数、阻力系数和升阻比,以改善其翼型性能;并在地效场中离地间隙分别为0。
3.
Several conclusions can be drawn: Firstly,the maximal lift-drag ratio Kmax=3.
计算结果表明该布局在Ma=6的时候,最大升阻比Kmax可以达到3。
3) Lift-to-drag ratio
升阻比
1.
This article researched the aerodynamic configuration design of the glide/skip trans-atmospheric vehicle(TAV) based on waverider with high lift-to-drag ratio.
利用乘波构形具有升阻比大的特点,将其作为滑翔跳跃式跨大气层飞行器的基准外形进行研究,提出了乘波构形的设计方法,详细分析了各设计参数对乘波构形的影响,研究了不同马赫数、不同优化目标下得到的乘波体的性能,得到了升阻比大、容积效率高的跨大气层飞行器气动布局,所得结论对跨大气层飞行器气动布局和乘波体外形的研究具有一定的参考价值。
2.
From the optimization analysis,the strategy to guarantee maximum glide distance is equivalent to keep maximum lift-to-drag ratio in the flight.
通过优化分析可知,保证最大滑翔距离的最优滑翔策略近似等价于导弹以最大升阻比飞行。
3.
The nonlinear simplicial method with punish function was used to optimize the osculating-cone waverider with lift-to-drag ratio as the objective function.
采用结合惩罚函数的单纯形法对吻切锥乘波构型在设计状态下以升阻比最大为目标分别进行了不考虑约束条件以及以容积效率、前体长度为约束条件的构型优化,生成了更为适合工程应用的乘波构型。
4) lift drag ratio
升阻比
1.
Increasing the lift drag ratio of turbine blade is an effective way for improving turbine s aerodynamic characteristics.
提高叶轮机械叶片的升阻比,是改进叶轮机械气动性能的重要途径。
5) drag lift ratio
阻升比
6) LIFT TO DRAG RATIO
升阻比
1.
For the target drone without sideslip,Gurney flap could enhance lift at medium and small angles of attack,and decrease the angle of attack where lift to drag ratio reaches maximum value.
无侧滑时Gurney襟翼可以在中小攻角下增加靶机的升力,使靶机最大升阻比对应的攻角提前。
2.
After design,the lift to drag ratio can be improved with the lift constraint.
优化设计算例结果表明所发展的方法是成功的,优化得到的弹性机翼在满足升力系数约束条件下提高了升阻比。
补充资料:升阻比
又称“举阻比”、“空气动力效率”。飞机飞行中,在同一迎角的升力与阻力的比值。其值随迎角的变化而变化,此值愈大愈好,低速和亚声速飞机可达17~18,跨声速飞机可达10~12,马赫数为2的超声速飞机约为4~8。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条