说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 等自由体积状态
1)  iso-free volume state
等自由体积状态
2)  zero free-volume state
零自由体积态
3)  free state
自由状态
4)  free-volume
自由体积
1.
Many experimental results have shown that the positron annihilation technique is an advanced technique for the test and characterization of the polymer microstructure, such as the free-volume of polymers.
实验结果证明,正电子湮没技术是一种先进的材料微观结构—自由体积的探测和表征技术。
2.
It is observed that the average size of free-volume holes generally remains constant,and the hole concentration and the width of hole radius distribution decrease with the increase in radiation dose.
测量了高强度聚苯乙烯(HIPS)的正电子寿命谱随γ辐照剂量的变化,观察到自由体积孔洞的平均半径随辐照剂量的增加而基本不变,且自由体积孔洞的浓度和半径分布宽度随辐照剂量的增加而减小。
3.
This paper explained the diffusion of migratory substances from crystalline polyolefins from microcosmic view according to Vrentas-Duda free-volume theory,discussed the effect of temperature,density of polyolefins,molecular structure of migratory substances and swelling on diffusion coeff.
根据Vrentas-Duda自由体积理论,从"微观"角度解释了渗透质在结晶聚烯烃中的扩散。
5)  Free volume
自由体积
1.
The results indicate that the discrete shear bands are formed around the indent and the local free volume is increased in the bulk metallic glass by deformation.
结果表明:在压痕周围形成离散的剪切带,形变引起了块状非晶合金局部自由体积增加。
2.
Positron annihilation lifetime spectroscopy(PALS) was used to investigate the free volume properties of PA6/clay nanocomposites in the temperature range from 10 K to 290 K below their glass transitions.
正电子湮没寿命的连续谱分析还表明,纳米粘土的含量和温度对自由体积分布有重要影响。
3.
Effects of toughening agent and temperature on the free volume and mechanical properties were studied by positron annihilation lifetime spectroscopy(PALS) and dynamic mechanical analysis(DMA) for a serious of epoxy resin samples with different toughening agent content(W/W).
用正电子湮没方法(PALS)和动态力学分析(DMA)方法研究了增韧剂和温度对环氧树脂的自由体积和力学性能的影响。
6)  free column volume (FCV)
自由床体积
补充资料:应力状态和应变状态
      构件在受力时将同时产生应力与应变。构件内的应力不仅与点的位置有关,而且与截面的方位有关,应力状态理论是研究指定点处的方位不同截面上的应力之间的关系。应变状态理论则研究指定点处的不同方向的应变之间的关系。应力状态理论是强度计算的基础,而应变状态理论是实验分析的基础。
  
  应力状态  如果已经确定了一点的三个相互垂直面上的应力,则该点处的应力状态即完全确定。因此在表达一点处的应力状态时,为方便起见,常将"点"视为边长为无穷小的正六面体,即所谓单元体,并且认为其各面上的应力均匀分布,平行面上的应力相等。单元体在最复杂的应力状态下的一般表达式如图1,诸面上共有9个应力分量。可以证明,无论一点处的应力状态如何复杂,最终都可用剪应力为零的三对相互垂直面上的正应力,即主应力表示。当三个正应力均不为零时,称该点处于三向应力状态。若只有两对面上的主应力不等于零,则称为二向应力状态或平面应力状态。若只有一对面上的主应力不为零,则称为单向应力状态。
  
  
  应力圆  是分析应力状态的图解法。在已知一点处相互垂直的待定截面上应力的情况下,通过应力圆可求得该点处其他截面上的应力。应力圆也称莫尔圆。图2b即为图2a所示平面应力状态下表示垂直于xx平面的面上之应力与x、x截面上已知应力间关系的应力圆。利用它可求得:①任意 α面上的应力;②"最大"和"最小"正应力;③"最大"和"最小"剪应力。由应力圆上代表"最大"和"最小"正应力的A、B点可知,这些正应力所在截面上的剪应力为零,因而"最大"和"最小"正应力也就是该点处的主应力。
  
  
  应变圆  也称应变莫尔圆,是分析应变状态的图解法,其原理与应力圆类似,但应变圆的纵坐标为负剪应变的一半,横坐标为线应变 ε。在已知一点处的线应变εx、εy与剪应变γxy时,即可作出应变圆,从而求得该点处主应变 ε1与ε2的大小及其方向。在实验分析的测试中常用各种形状的应变花测量(见材料力学实验)一点处三个方向的应变,例如用"直角"应变花可测得一点处的线应变ε、ε45°、ε90°。根据一点处三个方向的线应变也可利用应变圆求得该点处的主应变ε1与ε2
  
  广义胡克定律  当按材料在线弹性范围内工作时,一点处的应力状态与应变状态之间的关系由广义胡克定律表达。对于各向同性材料,弹性模量E、剪切弹性模量G、泊松比v均与方向无关,且线应变只与正应力σ有关,剪应变只与剪应力τ有关。三向应力状态下,各向同性材料的广义胡克定律为
  
  
  
  
  
  
  
  
  
  
  
  
   τxy=Gγxy
  
  
  
   τyz=Gγyz
  
  
  
   τzx=Gγzx平面应力状态(σz=0, τyz=0, γzx=0)下的广义胡克定律应用最为普遍
  
  
  
   单向应力状态下的胡克定律则为σ=Eε。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条