1) division-remainder method
除-余数法
2) division algorithm
带余除法
1.
Based on a set of constructed integers,this paper uses the minimum number principle to use the problem of the method of summation in the quotient and remainder derived from the theorem of division algorithm,for solving the minimum value point and minimum value.
通过已构造的一个整数集,利用最小数原理将带余除法定理中的商和余数的求法问题转化成求函数的最小值点和最小值问题。
2.
In this paper, by means of the division algorithm and congruence, firstly we discuss the fractions with the simplest decimal expansions; secondly, without having to carry out the actual calculation of the decimal, we discuss the length of the repeating part of the periodic decimal of 1/n and come to the corresponding conclusions.
利用同余及带余除法解决:小数展开式最简单的分数;对任意正整数n,不用直接做小数除法,1/n的小数展开式循环节的长度的上限及相关问题。
4) non restoring division
不恢复余数除算法
1.
This paper proposes a method to increase the speed of division array based on the non restoring division algorithm.
提出一种提高基于不恢复余数除算法的除法阵列速度的方法。
5) division-remainder hashing
除-余数散列
6) remainder number
余数法
1.
The continuous product of one degree factor standing for x~n was proved,with two methods proposed to find coefficients:one being undermined;the other being remainder number.
证明了xn可以表为连续的一次因式的乘积的和,并给出了求解系数的二种方法:待定系数法和余数法;编程求解了前10个幂的表出系数。
补充资料:内吸除(见单晶片的吸除技术)
内吸除(见单晶片的吸除技术)
internal gettering
内吸除internal gettering见单晶片的吸除技术。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条